

TMR2617S-AAC

Low Power Large Range TMR Linear Magnetic Sensor

Description

The TMR2617S-AAC magnetic sensor is a low-voltage, low-power consumption TMR linear sensor with wide linear range.

The TMR2617S-AAC integrates tunneling magnetoresistance (TMR) sensor, a low-noise operational amplifier, and a DAC circuit, where the analog output voltage maintains a linear relationship with the external magnetic field. The sensor can be widely used in various position sensing applications, supporting customer requirements for low voltage, high resolution, high signal-to-noise ratio, and wide linear range.

The product is packaged in SOT23-3 and complies with RoHS and REACH.

SOT23-3

Features and Benefits

- Tunneling magnetoresistance (TMR) technology
- Supply voltage: 1.6 V to 5 V
- Static current consumption < 300 µA
- \bullet Output voltage: 5% to 95% V_{cc}
- Output voltage follows $V_{\mbox{\scriptsize CC}}$ changes
- Low noise
- Z-axis sensitivity
- Sensitivity with high consistency
- Low hysteresis
- RoHS & Reach compliant

Applications

- Magnetic keyboard
- Magnetic field sensing
- Position sensing

TMR2617S-AAC ±1200 Gs Output curve

Selection Guide

Part Number*	Supply Voltage	Linear Range	Operating temperature	Static Current Consumption	Package	Packing Form
TMR2617S-AAC-XXXX-XXX	1.6 V to 5 V	±1200 Gs	-40 °C to 85 °C	< 300 µA	SOT23-3	Tape & Reel

Note: Sensitivity and offset voltage can be customized according to customer requirements.

Product Model Description

Catalogue

1. Functional Block Diagram	03
2. Sensing Direction	03
3. Pin Configuration	03
4. Absolute Maximum Ratings	04
5. Electrical Specifications	04
6. Output Characteristics	05
7. Application Circuit	05
8. Dimensions	06

Low Power Large Range TMR Linear Magnetic Sensor

1. Functional Block Diagram

Figure 1. Block Diagram

2. Sensing Direction

The TMR2617S-AAC is sensitive to external magnetic field in the Z-axis as shown in Figure 2.

Figure 2. Sensing Direction (SOT23-3)

3. Pin Configuration

Figure 3. Pin Configuration (SOT23-3)

Pin Number	Name	Function
1	V _{cc}	Supply voltage
2	V _{OUT}	Output
3	GND	Ground

4. Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Unit
Supply voltage	V _{cc}	-0.3	6	V
Magnetic flux density	В	-	4000	Gs
V _{out} current drive	-	-	1.5	mA
Operating temperature	T _A	-40	85	°C
Storage temperature	T _{stg}	-50	150	°C
ESD (HBM)	V _{ESD}	-	4000	V

Note: The maximum value in the limit parameter only ensures that the IC is not permanently damaged, please refer to the "Electrical Performance Parameters" for normal operating conditions of the IC.

5. Electrical Specifications

 V_{cc} = 1.6 V to 5 V, T_A = 25 °C, a 100nF capacitor connected between the power and ground

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage	V _{cc}	-	1.6	3.3	5	V
Operating current	I _{cc}	V _{cc} = 1.8 V	-	200	-	μA
		V _{cc} = 3.3 V	-	300	-	μA
Bandwidth	BW	-3 dB	-	-	50	kHz
Load resistance	RL	-	10	-	-	kΩ
Load conductance	CL	-	-	-	10	nF
Sensitivity	SEN	-	User programmable			mV/V/Gs
Temperature coefficient of sensitivity	TCS	T _A = -40 °C to 85 °C	-	1000	-	PPM/°C
Offset voltage	V _{OFFSET}	-	User programmable			mV/V
Temperature coefficient of offset	тсо	T _A = -40 °C to 85 °C	-	-0.12	-	mV/°C
Nonlinearity	NONL	in ±1200 Gs range	-	2.5	-	%FS
Hysteresis	HYS	in ±200 Gs range	-	1.2	-	Gs
Noise	V _N	V _{cc} = 3.3 V, BW = 5 kHz	-	-	10	mV _{PP}
Power-on time	t _{PO}	-	-	-	100	μs

6. Output Characteristics

The output voltage of the TMR2617S-AAC changes linearly with external magnetic field. As shown in Figure 4, the V_{OUT} is 50% V_{CC} at zero magnetic field. When the magnetic field changes from -B Gs to B Gs, the V_{OUT} output range is from 5% to 95% V_{CC} .

Figure 4. Output voltage versus magnetic field

7. Application Circuit

Figure 5. Application circuit diagram

Note: C1 should be as close as possible to the V_{cc} / GND pins.

TMR2617S-AAC Low Power Large Range TMR Linear Magnetic Sensor

8. Dimensions

SOT23-3 Package

TOP VIEW

Figure 6. Package outline of SOT23-3 (unit: mm)

Copyright © 2024 by MultiDimension Technology Co., Ltd.

Information furnished herein by MultiDimension Technology Co., Ltd. (hereinafter MDT) is believed to be accurate and reliable. However, MDT disclaims any and all warranties and liabilities of any kind, with respect to any examples, hints or any performance or use of technical data as described herein and/or any information regarding the application of the product, including without limitation warranties of non-infringement of intellectual property rights of any third party. This document neither conveys nor implies any license under patent or other industrial or intellectual property rights. Customer or any third-party must further determine the suitability of the MDT products for its applications to avoid the applications default of customer or third-party. MDT accept no liability in this respect.

MDT does not assume any liabilities of any indirect, incidental, punitive, special or consequential damages (including without limitation of lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, MDT's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the terms and conditions of commercial sale of MDT.

Absolute maximum ratings are the extreme limits the device will withstand without damage to the MDT product. However, the electrical and mechanical characteristics are not guaranteed as the maximum limits (above recommended operating conditions) are approached. MDT disclaims any and all warranties and liabilities of the MDT product will operate at absolute maximum ratings.

Specifications may change without notice.

Please download latest document from our official website www.dowaytech.com/en.

Recycling

The product(s) in this document need to be handed over to a qualified solid waste management services company for recycling in accordance with relevant regulations on waste classification after the end of the product(s) life.

No.2 Guangdong Road, Zhangjiagang Free Trade Zone, Jiangsu, China Web: www.dowaytech.com/en E-mail: info@dowaytech.com

