MDT USB Magnetometer User Manual

Version 4.0.1

13 February 2020

Contents

Introduction	4
Installation	7
Troubleshooting the Installation	11
Graphical User Interface (GUI) Operation	12
Main Runtime Window	12
Quick Access Button Details	13
File Menu Details	14
Configure Menu Details	15
Configure COM Submenu Details	16
Configure Analog Gauges Submenu Details	17
Configure Charts Submenu Details	18
Configure View Menu Details	19
Viewing Modes	20
Digitizer Menu Details	22
Command Line Submenu Details	23
Sensor Menu Details	24
Calibration Coefficients Submenu Details	25
Read Delay Submenu Details	26
AC Coupling Submenu Details	27
Reset to Factory Defaults Submenu Details	
Default Startup Settings	29
Reading Multiple USB Magnetometers Simultaneously	
Magnetometer Calibration	31
Calibration of USB2510x Series Magnetometers Using a Calibration Magnet	
Transverse Magnetometer Calibration Procedure	35
Axial Magnetometer Calibration Procedure	
Zeroing a Magnetometer	
Zeroing Based on Calibration Procedure	
Information about Resolution and Noise	
Magnetometer Linearization	41

Magnetometer Orthogonality	41
Exporting Data	42
Direct Export	42
Data Logging	42
Measurement Examples	42
1. Field distribution around an AAA battery	42
2. A ferrous object moving past a stationary magnetometer	44
3. Hidden magnetic signature in a document	45
Output Data Formats	47
ASCII	47
Binary	47
Binary Algorithm	
USB Port Programming	50
Serial Port Commands	51
Serial Port Operation Using a RS-232 Terminal Emulator	54
Custom Software Development	56
Custom Firmware Development	58
Updating USB Magnetometer Firmware	63

Introduction

MDT USB Magnetometers are a family of digital magnetometer products that are intended for the measurement of magnetic fields at frequencies less than about 250 Hz. A MDT USB Magnetometer combines a MDT TMR2705 TMR full bridge magnetic field sensor or other magnetic field sensor with plug and play USB data acquisition electronics to provide a digital magnetometer in a simple low cost form factor. It is designed such that the user may use it directly combined with the proprietary MDT graphical user interface (GUI), controlled with a terminal emulator program, or integrated into the user's custom written program. The GUI can be run on a Microsoft Windows Tablet, a notebook, a desktop computer, or an OTG compatible Android device. Additionally, the magnetometer electronics may be reprogrammed by the user using freely available open source Arduino development tools. The MDT USB Magnetometer is thus a complete development tool that allows a user a simple means for experimenting with MDT TMR sensors, sensor applications, and developing microcode and algorithms.

Applications

- High precision, Low speed (<250 Hz) magnetic field measurement
- magnetic field range dependent on sensor series (<1 mOe to 40 Oe, <1 Oe to 30,000 Oe)
- Data acquisition systems
- Remanent flux inspection
- Non destructive testing
- Motion and fields of magnetic objects
- Magnetic field data logging
- Current measurement
- Detection of magnetic objects
- Laboratory measurements
- Sensor signal processing algorithm development

<u>Features</u>

- High accuracy TMR magnetic field sensor or high field Hall sensor
- Low power operating directly from a USB port
- Resolution, speed, and sampling can be adjusted
- USB plug and play
- Ability to run multiple USB sensors simultaneously.
- Fully open architecture and documented interface permitting custom code development
- Compatible with any programming language that can access a COM port
- Can be used directly with a terminal emulator program on Windows, Mac, etc.
- Low cost in volume and can be considered for disposable applications
- Data acquisition hardware in the USB connector has a bootloader and it can be custom programmed through a USB port using freely available Arduino software
- TMR sensors provide easy user calibration in Earth's field with no specialized equipment required, and Hall Sensors are easily calibrated using a magnet
- Data logging graphical interface for Windows
- Standard FTDI USB drivers for compatibility and reliability

The frequency limitation of the MDT USB Magnetometer is due to the electronic design, not an inherent limitation of the sensor. The goal of this product family is to produce an affordable magnetometer that is applicable for most users' measurement needs. The MDT USB Magnetometer thus trades speed for reduced electronics cost. Generally, TMR sensors can achieve speeds of several tens of MHz. Please consult MDT for higher speed measurement applications.

The MDT USB Magnetometer has the following configuration in single-axis:

A magnified view of an axial TMR magnetometer shows the location of the sensor.

Three-axis USB Magnetometers provide a three-axis sensor protected by an aluminum tube as follows:

The housing is plastic with a protective cap, and the sensors are located at the end of an aluminum tube for greater protection.

The cable length of these USB Magnetometers may be extended without degrading performance of the magnetometer by using a female to male USB A extension cable.

Installation

Installation in most cases is very simple. In the typical setup, the USB Magnetometer is plugged into a USB port, and the Windows operating system automatically installs the correct driver for communicating with the USB Magnetometer. The user then only needs to copy the USBMagVx.exe file onto the computer, and run the program. The steps are generalized as:

(1) Insert the USB Magnetometer into a USB port and allow the operating system to install the USB COM port driver.

(2) Copy the USBMagVx.exe file into a directory of choice. This executable program is included in the USB Magnetometer directory.

<u>Details of Step (1)</u> - The first time a USB Magnetometer is plugged into a USB port of a computer, the computer operating system searches for a driver for the FTDI serial to USB convertor chip in the USB Magnetometer. The USB Magnetometer will show up in the computer Device Manager as a USB Serial Port. Note, in most cases, the user does not need to open the Device Manager. It is only explained here for clarity or in case debugging is necessary. For example, in the screenshot below, the USB magnetometer shows up as COM34. The COM port is assigned by the operating system, and when plugged into different computers, the USB Magnetometer may be assigned different COM ports on different computers. Likewise, if two USB magnetometers are plugged into the same computer, and then the different USB Magnetometers will have different COM ports assigned to them. This allows multiple magnetometers to be operated simultaneously with the same computer.

🚔 Device Manager	USB Serial Port (COM34) Properties
File Action View Help	General Port Settings Driver Details
	USB Serial Port (COM34) Driver Provider: FTDI Driver Date: 7/10/2015 Driver Version: 2.12.6.0 Digital Signer: Microsoft Windows Hardware Compatibility Publisher Driver Details To view details about the driver files. Update Driver To update the driver software for this device.
TAP-Windows Adapter V9 TeamViewer Adapter Client Adapter Client Adapter Client Adapter Communications Port (COM1) Communications Port (COM1) Communications Port (LPT1) USB Serial Port (COM34) Processors	Roll Back Driver If the device fails after updating the driver, roll back to the previously installed driver. Disable Disables the selected device. Uninstall To uninstall the driver (Advanced). OK Cancel

If you see a new "USB Serial Port (COMxx)" assigned after the USB Magnetometer is connected, then the operating system has properly configured the USB Magnetometer driver. Depending on the user's computer, other USB Serial Ports may be present, especially if other FTDI-based devices are present, so the best way to verify the correct installation of the USB Magnetometer driver is to remove and reinsert the USB Magnetometer form the computer's USB port and look for a corresponding change in the Device Manager COM port listing. Note, if the driver is automatically downloaded by the operating system, it may require as long as 10 minutes for this procedure to complete. Windows will provide a notification that it is searching for drivers and installing them in most circumstances.

In some circumstances, the operating system may not be able to find the FTDI COM port driver. This may happen for example, when no internet connection is available. In this case, the USB Serial Port driver may be installed manually. It is available for download at:

http://www.ftdichip.com/Drivers/VCP.htm

Please download the appropriate VCP (Virtual COM Port) executable installer program for your operating system and computer hardware. Note, there are drivers available for Windows, Mac, Linux, and Android as well.

<u>Details of Step (2)</u> - The USB Magnetometer user interface can be copied onto the user's computer. It is presently only available for Windows computers and has been verified on Windows XP, 7, 8, and 10. The installer is located at

<Removable drive letter>:\MDT USB Magnetometer\USBMagVx.exe

The program can be copied directly to the desktop, or it may be placed in a program folder and associated with a shortcut in the start menu. In Windows 10, this can be done as follows:

1. use the %appdata%\Roaming\Microsoft\Windows\Start Menu\Programs location, which belongs to your user account, so no additional privileges are required.

2. Create a folder there and copy the USBMagVx.exe program into the folder.

3. The folder will then appear on your start menu after a few minutes or after restart.

Once the program is installed, please start the USB Magnetometer GUI program.

The newer versions of the USB Magnetometer GUI have a checkbox located at the lower right hand side of the configure COM port window, called "Filter COM Ports." This is used to tell the software to only list COM ports in the "Select Port 1" and "Select Port 2" drop boxes. If no port number shows in those drop boxes, please verify that a USB Magnetometer is plugged into a USB port, and that the USB Magnetometer FTDI driver installation was successful. If all of the above are true, uncheck and recheck the "Filter COM Ports" check box. That will rescan the ports.

Mass MultiDimension	Technology USB	Magnetometer V4.0.1.0				2000		×
File Cor	nfigure Vie	w Digitizer	Sensor	About	中文		Port Stat	us
	JLTA VIENS Sensing	SíON the Future	1, Se 2, Oj 3, Ifi 4, Afi 5, Ye 6, Ye	elect a COM pen a COM p desired, sele ter desired p ou may close ou may return	port with probe port ect a second COP orts are selected and select a dif n to this page to	attached (no M port, and d, press 'Cor ferent COM change COI	ot COM1) open it ntinue' port M ports	
	COM29				Po	rt Status		_
Select Port 1	COM23	V Upen Port	Llose	Port	Port 1 Closed			
Select Port 2	COM29	V Open Port	Close	Port				
Read Buffer								
		Co	ontinue					
	Optimize Ports (Administrator Mode Only)							
Exit Program								
						Filter CO	M Ports [

Pull down the "Select Port 1" down menu and select the appropriate port for the USB Magnetometer. Then press the "Press to continue" button. You may optionally quit the program at this point by pressing the "Exit Program" button. If the "Filter COM Ports" checkbox is not selected, do not worry about choosing an incorrect port. The software automatically tests the device at the selected port number, and if incorrect, you will see a message as follows:

B MultiDimension	Technology	USB Magne	tometer V4.0.1.0				-		
File Cor	nfigure	View	Digitizer	Sensor	About	中文 🗌	COM P	ort Stat	u
	JLT MEN Sensin	i ISi g the	ON Future	1, 8 2, 0 3, H 4, A 5, Y 6, Y	Gelect a COM port Open a COM port f desired, select a lifter desired ports fou may close and fou may return to t	with probe attach second COM port are selected, pres I select a different his page to chang	ed (not) , and op :s 'Conti COM p ge COM	COM1) pen it inue' ort ports	
Select Port 1	COM1	~	Open Port	Clos	e Port	Port Stat	tus at nort		
Select Port 2	COM1	~	Open Port	Clos	e Port				
Read Buffer	Serial Port 1	Opened							~
									v
			Co	ontinue					
	Opti	mize I	Ports (Ad	lminist	rator Mod	le Only)			
			Exit	Progra	am				
						Filt	er COM	Ports	

Once the proper port is selected, you will see the "valid probe found" message in the Read Buffer window of the dialog. You may also see the red LED of the USB connector flashing, if you look quickly enough.

MultiDimension	Technology	USB Magne	etometer V4.0.1.0				_		X
File Co	nfigure	View	Digitizer	Sensor	About	中文 🗌	COM	Port Stal	tus
	JLT MEN Sensin	Í ISí g the	ON Future	1. S 2. O 3. If 4. A 5. Y	elect a COM por pen a COM port desired, select a fter desired ports ou may close an ou may return to	t with probe att a second COM s are selected, d select a diffe this page to ch	ached (no port, and press 'Cor rent COM ange COI	ot COM1) open it ntinue' port M ports	
						Port	Status		
Select Port 1	COM29	~	Open Port	Close	Port Prot	e 1: Valid probe	found		
Select Port 2	COM29	~	Open Port	Close	Port				
Read Buffer	Serial Port 1 Hello Hello MDTUSBMA	Dpened G3D.V9.202	:00116						^ ~
	Continue								
	Opti	mize	Ports (Ac	lminist	rator Mo	de Only)		
Exit Program									
							Filter CO	M Ports	

A second magnetometer can be opened at this point if the user wishes to monitor two magnetometers simultaneously. In any event, after the "Continue" button is pressed, the program will go through an obvious initialization routine, and the user will be redirected to the main viewing window.

If everything went well, data should start streaming to the chart at the lower right, and the Read Buffer and Magnetic Field displays will change as the measured field value changes. Depending on the magnetometer that is being used, you can verify operation either by moving the magnetometer in Earth's field, or you can move a magnet past the magnetometer to verify the hardware is responding.

Troubleshooting the Installation

If the USB Magnetometer does not show up as a COM port in the Serial Port drop down menu, then check the following:

1. Does the USB Magnetometer show up as a USB Serial Port in the Device Manager? If not, try unplugging the USB Magnetometer from and plugging back into the computer's USB port. If this fails, then reinstall the FTDI drivers manually.

2. Close and restart the MDT USB Magnetometer GUI.

3. Verify no other programs are using the COM port. The MDT USB Magnetometer GUI cannot run simultaneously with a terminal emulator program.

Graphical User Interface (GUI) Operation

The layout of the GUI and a brief description of the features is now presented. The main runtime window is shown below.

Main Runtime Window

Item 1 – Runtime Menu Area.

Item 2 – Magnetic Field (Oe) analog meter.

Item 3 – Language selection control.

Item 4 – COM Port Error indicator LED. Normal operation is indicated by green. An error requiring restarting the program is indicated by red.

- Item 5 Standard accelerators used for minimizing, maximizing, and closing the window.
- Item 6 Selected Magnetometer indicators.

Item 7 – Digital display indicating the magnetic field detected by the magnetic sensor.

Item 8 – Post processing (PP) indicator used to indicate if data smoothing has been applied to the H (Oe)

vs. time (s) chart. Data smoothing is moving window is applied to the data after it is acquired.

- Item 9 Indicator used to indicate the digitizer low pass filter is enabled.
- Item 10 H (Oe) vs. time (s) chart
- Item 11 Quick Access Buttons for setting runtime parameters.

Item 12 – Controls for selecting the magnetometer, axis, and range to monitor in the analog gauge and digital meter on the runtime window.

Item 13 – Real-time display of the COM port output values from the USB Magnetometer and GUI messages.

Item 14 - H (Oe) vs. time (s) chart maximum and minimum H values. These items may be manually changed by typing in a number when the magnetometer is not in autorange mode.

Button Name	Function
Calibrate to Field	Opens a file dialog window used for calibrating the sensitivity and offset of the sensor.
Set/Disable Relative Offset	Applies and reversibly removes an offset value to/from the sensor output. The offset value is computed automatically based on the present reading. When removed, the offset returns to the originally calibrated value. This is useful for zeroing a measurement when there is a DC background field. Note the button name toggles between enable and disable depending on the status of the magnetometer.
Set Man. Trigger	"Set Manual Trigger." This button is used in order to change the sampling from continuous streaming read mode to a mode where readings are only acquired when the "Set Man. Trigger" button is pressed. This is useful when mapping fields around a magnetic object. Combined with data averaging, it enables very precise mapping of magnetic fields. Note this button color changes to yellow and flashes when the Manual Trigger Mode is enabled.
Continuous	This button sets continuous streaming read mode. It often needs to be pressed after selecting runtime menu items. This button changes to "Set Continuous" when the manual trigger mode is enabled.
Dynamic Range	Preamplifier gain set to 1x to allow the maximum possible magnetic field range.
Low Noise	Preamplifier gain set to 8x to allow the best possible magnetic field resolution.
ADC Fast	The ADC is set to 12-bit resolution. This provides about 100 Hz sampling frequency.
ADC Normal	The ADC is set to 16-bit resolution.
Autoscale On	The maximum and minimum values of the vertical scale of the chart constantly update to the maximum and minimum values of the data displayed in the chart.
Autoscale Once	Set the maximum and minimum values of the vertical axis of the chart to the present maximum and minimum values of the data displayed in the chart. Do not update the maximum and minimum values of the vertical axis as the data changes.
Autoscale Off	Sets the vertical scale of the chart to the present maximum and minimum values. Do not update the maximum and minimum values of the vertical axis as the data changes.
Clear Chart	Clear all chart data and reset the timer to zero.
Pause/Resume	This button is used to temporarily pause a measurement. Note however, the timer will continue to count time since the first measurement point.
Stop	This button is used to quit the program.

Quick Access Button Details

File Menu Details

Item	Submenu	Function
1	Export Chart Data	Opens a file dialog window, and then exports the data
		presently displayed in the H (Oe) vs. time (s) chart to a CSV
		file defined by the user.
2	Data Logger	Used to send all data to a CSV formatted file. Data will be
		continuously updated as long as it is acquired. Opens a file
		dialog window for selecting the name of the data logging file.
3	Exit Program	Quits the program. NOTE: It is possible to return to the
		runtime window through the "View" menu at the top of this
		window.

Configure Menu Details

Item	Submenu	Function
4	Configure COM	Open the COM port configuration window
5	Configure Analog Gauges	Configure the range and selected magnetometer for the analog
		gauge
6	Configure Charts	Select the display options for the real-time charts.
7	Return	Display the runtime window

Configure COM Submenu Details

		8	9		
Mass MultiDimensio	n Technology USB Magnetom	neter V4.0.1.0	/		
File	onfigure Vie w D)igitizer Sensor	Atjout	中文 🗌 Com P	Port Status
	ULTÍ MENSÍO Sensing the F	N 3. <i>uture</i> 6.	Selectra COM port wi Operna COM port If de fired, select a se Afte desired ports ar You may close and s You may return to thi:	th probe attached (not cond COM port, and o e selected, press 'Cont elect a different COM p s page to change COM	COM1) pen it inue' ort I ports
Select Port 1	СОМ29 🗸	Open Port Clo	se Port Probe 1:	Port Status Valid probe found	
Select Port 2	сом29 ~	Open Port Clo	se Port		
Read Buffe	Serial Port 1 Opened Hello Hello MDTUSBMAG3D.V9.2020011	6			^ ~
		Continu	e		t
->	Optimize Po	rts (Adminis	trator Mode	e Only)	
		Exit Progr	am		
				Filter COM	Ports 🗹

Item	Submenu	Function
8	Open Port	Open the selected COM Port
9	Close Port	Close the selected COM Port
10	Continue	Initialize Open COM Ports and begin logging data
11	Optimize Ports	This button leads to a window that is used to set the USB port settings for optimal speed. It is recommended this is done once for each magnetometer. Once it is set on a computer for a specific magnetometer, it does not need to be repeated. This only functions when the program is run in administrator mode. This can be accessed by right-clicking the program icon and selecting "run as administrator."
12	Exit Program	Close any open COM Ports and exits the program
13	Filter COM Ports	This box is checked by default. It limits the COM Ports displayed in the Select Port drop boxes to ports that are recognized as having a USB Magnetometer. Unselecting and reselecting will rescan the ports.

Configure Analog Gauges Submenu Details

Item	Submenu	Function
14	Set to Chart Maximum	Sets all analog gauge displays to the maximum
		absolute value of the data presently displayed in the
		runtime chart
15	Analog Gauge Default	This sets the analog gauge limits to the default value stored in the USBMag EEPROM. The USBMag will store the range value each time the software is run, if the GUI is properly exited. This is the default range for the next session.
16	Analog Gauge Force Range	This forces the maximum value of the analog gauges to
		whatever value a user prefers, as entered in box 17.
17	Custom range value	A number for the range can be typed here. It should
		be a positive number greater than 0.

Configure Charts Submenu Details

Item	Submenu	Function
18	Data Points	The maximum number of data points displayed on the
		chart
19	Rolling Buffer	When selected, the chart window will display the most
		recent number of data points acquired and discard
		earlier data points.
20	Fill Buffer Stop	When selected, the chart window will fill up to the
		number of data points, and then stop acquiring data.
21	Autoscale Once	The chart will autoscale once based on present data
		displayed, and then turn autoscale off.
22	Smooth Data	Uses a moving window to smooth the data in the H (Oe)
		vs. time (s) chart. The smoothing operation is applied to
		the data that is exported.
23	Clear Chart	Clears the data in the chart and resets the time axis.
24	Chart Legend On?	Displays/hides the chart legend
25	Autoscale On	The chart is set to autoscale continuously.
26	Autoscale Off	Turn off autoscaling, leave maximum and minimum
		values unchanged
27	Select legend items	Selects items to be viewed in the chart legend
28	Return	Returns the view to the runtime window

Configure View Menu Details

ltem	Submenu	Function
29	Chart Display	Displays only one large real-time H vs. time chart
30	Analog Gauge Display	Displays a large analog gauge, and a small digital meter. The analog gauge and digital meter show data from the currently selected magnetometer, and the range of the analog gauge can be selected from the range selector at the bottom right.
31	Digital Meter Display	Displays a large digital meter, and small selectors for choosing the magnetometer and axis to monitor. The display also contains indicators for acquiring statistics on the selected waveform. The statistics measurements are enabled when the "Stats" button is pressed.
32	Data and Controls	Returns the view to the default "Data and Controls" viewing mode.

Viewing Modes

1. Chart Display – this chart displays the same date seen on the default chart page.

2. Analog Gauge Display – here the selected magnetometer and axis may be changed. The analog gauge range may be selected from the various presets in the selection box at the lower left. There is a small digital meter below the analog gauge.

3. Digital Meter Display – This chart shows a large digital display of the presently selected magnetometer and axis. The "Stats" button is used to acquire statistics on the present measurement. The data provided is the Maximum value, the minimum value, the mean average, the RMS average, the standard deviation, and the elapsed time of the measurement. Note the standard deviation indicator shows the RMS noise of the measurement under the present configuration as affected by ADC and averaging settings.

MultiDimension Technology USB Magneton	neter		– 🗆 X
File Configure View Digiti	izer Sensor	About	中文 🗌 COM Port Status
Default			x
Ω	17	77(
	ЦΙ		KLJ –
PP Off			LPF On
	Maximum N/A	RMS N/A	
Stats	Minimum N/A	Std. Dev. N/A	MULTI
X 🗸	Average N/A	Time N/A	DIMENSION Sensing the Future

"Data and Controls" button on the "View" submenu will return the GUI to the default runtime viewing mode.

Mag MultiDimension Te	chnology USB Magnet	ometer V	4.0.1.0						-	-		×
File Config	jure View	Digitize	a 🛛	Sensor	A	bout		中文		M Por	t Stati	JS
	i ISíON	Magn	etic Fie	eld (Oe)	5 30	35			Default -0	.119	79	XYZ
Sensing Read Buffer #1: RD 7508.507,-0.119 #1: RD 7508.532,-0.119	g the Future 373,0.02240,0.41541 399,0.02221,0.41540	40	C. C. C.			The second second	10 45 50		0	.022	50	
									0 PP Off	.415	49 LPF	On
		Default	~	XYZ	~~	Defau	lt Rng	~ L	-0.2	H	I (0.6
Calibrate to Field	Relative Offset	_	^{0.6} Г			_					V1	٦
Manual Trigger	Continuous	0°	0.4 -		_					Ξ	Y1 71	
Dynamic Range	Low Noise	leld									21	
ADC Fast	ADC Normal	etic	0.2									
Autoscale On	Autoscale Once	Magn	0-									
Autoscale Off	Clear Chart		-0.2 - 7503	3.7 75	04.2	7504	4.7 7	505.2	750	5.7	750	6.2
Pause	Exit Program						Time (s)				

Digitizer Menu Details

Item	Submenu	Function
33	Enable LPF	Turn on real-time filtering of the USB Magnetometer data, where a
		causal digital low pass filter is applied to the data in real time before it
		is sent over the USB port.
34	Disable LPF	Disables the real-time low pass filtering.
35	Command Line	Open a terminal emulator window for allowing a user to enter text
		commands directly to the magnetometer.
36	Set ADC Bits	Set the number of digitizer bits. The allowable range is 12 to 18 bits.
37	Dynamic Range	Preamplifier gain set to 1x to allow maximum field range.
38	ADC Fast	Preset for fast data acquisition mode. This mode is 12-bit and LPF On.
		The speed is roughly 100 Hz for single axis magnetometers and 250 Hz
		for three-axis magnetometers.
39	Set ADC Samples	Set the number of samples to be averaged for each data point.
40	Low Noise	Preamplifier gain set to maximum to permit lowest noise
		measurement.
41	Normal Mode	Preset for 16-bit ADC resolution with LPF On. The speed is roughly 8
		Hz for single axis magnetometers and 40 Hz for three-axis
		magnetometers.
42	Sampling Frequency	Reports the sampling frequency of the data acquisition.
43	Return	Returns the view to the default "Data and Controls" viewing mode.
44	Binary Encode	Switches the magnetometer output between binary and ASCII
		representation. Binary mode is only recommended when running
		under the "ADC Fast" condition.

Command Line Submenu Details

Item	Submenu	Function
45	Select COM Port	Used to chose which connected magnetometer to be communicated with
46	Write Buffer	The commands to be sent. Multiple commands can be sent at one time if they are each on a separate line.
47	Import Script	A series of commands can be written into multiline text file, and loaded for programming some default action.
48	Send	Write the sequence of commands in the Write Buffer to the connected magnetometer.
49	Read Buffer	Data sent from the magnetometer to the COM port.
50	Export Rcv	Export the present contents of the Read Buffer to a text file.
51	Clear Rcv	Clears the Read Buffer
52	Return	Return to the main runtime window.

A sample Write Buffer script could be as follows. In this case a gain of 8, with 18 bits, and 4 samples per read is programmed.

PE PG 8 DB 18 NS 4 RE

Sensor Menu Details

Item	Submenu	Function
53	Automatic Offset	Automatically zeros the sensor offset, and overwrites the calibration
		value used during run-time. This is especially useful if a zero gauss
		chamber is used for calibration each time the magnetometer is used.
54	Manual Offset	Manually programmed offset voltage. It overwrites the calibration
		value used during run-time. This is useful if the user want to offset
		the different traces on the H(t) chart for easier viewing.
55	Manual Sensitivity	Allows the user to overwrite the presently used sensitivity calibration,
		but it does not overwrite the permanent value stored in the EEPROM.
56	Display Calibration	Allows the user to view all magnetometer calibration data, the sensor
	Coefficients	ID, and the firmware revision. It also specifies the status of the
		calibration and linearization parameters stored in the EEPROM.
57	Calibration to Field	Opens the magnetometer calibration window. It permits the user to
		temporarily overwrite the problem calibration or set new values
		permanently in the EEPROM.
58	AC Magnetic	This is used to set a magnetometer to report an AC magnetic
	Measurement	measurement in units of mOe RMS. This is not particularly useful for
		the USB2705x and USB2510x magnetometers due to low bandwidth.
59	Read Delay	Used to set a fixed time delay between reads. Only useful when the
		sampling period is much shorter than the desired read delay.
60	AC Coupling	Allows the magnetometer to be set in AC or DC coupling mode
61	Reset to Factory	This is used to restore a USB magnetometer if the onboard EEPROM
	Default	has been corrupted. The user will need to recalibrate the
		magnetometer after performing the reset.
62	Return	Returns the view to the default "Data and Controls" viewing mode.

Calibration Coefficients Submenu Details

The calibration coefficients are useful for debugging a sensor. The submenu operates as follows.

Item	Submenu	Function
63	Select Probe	Select a magnetometer to query
64	Select Axis	If the magnetometer is three-axis, allows particular axis to be queried
65	Go	Press to query the selected magnetometer and axis
66	Firmware	Reports the present firmware revision
67	Sensor ID	Reports the unique serial number of the sensor
68	Calibration EEPROM	If valid, this means the magnetometer was previously programmed,
	Valid	and the programmed calibration values were stored in the EEPROM
69	Sensitivity	The present sensitivity value for the magnetometer and axis
70	Offset	The present offset voltage for the selected magnetometer and axis
71	Linearization	If valid, this means the magnetometer was previously linearized, and
	EEPROM Valid	the programmed linearization values were stored in the EEPROM
72	Linearization values	The linearization values used for the selected magnetometer and axis
73	ADC Settings	The number of samples per read, number of bits per sample, and the
		reference voltage of the ADC.
74	Return	Return to the main runtime window.

Read Delay Submenu Details

Note, the period of the data sampling frequency must be less than the desired delay time. If for example the sampling frequency is measured to be 100 Hz (you can get this information from the Sampling Frequency measurement feature – item 42), then the period of the sampling frequency is 1/100 Hz = 0.01 s or 10 milliseconds. You can then set a delay of greater than 10 ms if you want a specific read delay time. 1000 ms would give a 1 s delay between each read.

Item	Submenu	Function
75	Probe 1 Delay	The desired number of milliseconds between reads of probe 1
76	Set	Set the read delay for probe 1
77	Probe 1 Delay	The desired number of milliseconds between reads of probe 2
78	Set	Set the read delay for probe 2
79	Return	Return to the main runtime window.

AC Coupling Submenu Details

The coupling of the ADC to the sensor can be set on this page. This is useful for long term measurements where the DC component is not needed, or for looking at AC waveforms. Here for example is the magnetic field located outside a standard mainland Chinese power cord measured with AC coupling gin Fast Mode.

Reset to Factory Defaults Submenu Details

Magnetometer V4.0.1.0	- 🗆 X
File Configure View Digitizer Sensor About	中文 🗌 COM Port Status
Probe 1 Type: TMR v	- 8
Reset Probe 1	K
Probe 2 Type: TMR 282	. 83
Reset Probe 2	Ľ
	84
Return	EXAMPLE 1 EXAMPLE 1 EXAMP

This feature is used to attempt to recover a USB magnetometer if the EEPROM has been corrupted. This can happen for example if the user enters an incorrect value into the magnetometer using the low level EEPROM programming commands. Generally, a USB magnetometer cannot be damaged by resetting the EEPROM, but the user will need to recalibrate the magnetometer, since all previous calibration data will be overwritten. After resetting the magnetometer will have a sensitivity of 1 V/V/Oe and an offset of 0 V. The user will more or less see the raw voltage output of the sensor.

Item	Submenu	Function
80	Probe 1 Type	TMR or Hall. This specifies the default linearization coefficients.
81	Reset Probe 1	Set magnetometer 1 EEPROM to the default Hall or TMR values.
82	Probe 2 Type	TMR or Hall. This specifies the default linearization coefficients.
83	Reset Probe 2	Set the read delay for magnetometer 2
84	Return	Return to the Configure COM Port window.

Default Startup Settings

The startup settings for the GUI are saved in the EEPROM of a USB magnetometer each time the program is exited. By default, the GUI is configured based on this information in the EEPROM. The default startup conditions of the GUI may also be changed by including a text field with the name of "USBMagDefaults.txt" in the same folder where the USBMagVx.x.x.exe program is located. If this file is present, then default conditions will be read form the "USBMagDefaults.txt" file rather than from a USB Magnetometer's EEPROM. The file should have the following contents

{Language, present choices are EN,ZH}
Language:EN
{Data Points to set in chart buffers>0, <1e6}
DataPts:100
{Analog Gauge Range >0}
AGR:100

"Language" is the GUI display language. "DataPts" is the number of points in the H(t) display. "AGR" is the field range in Oe for the analog gauges. The number must be separated from the descriptor by a colon, and there can be no spaces.

Reading Multiple USB Magnetometers Simultaneously

The USB Magnetometers do not interfere with each other, and several may be accessed simultaneously. The USB Magnetometers need not be of the same type. Additionally, multiple copies can be run on the same computer, each of which accesses different USB Magnetometers simultaneously. These capabilities are useful for building arrays of magnetometers. The number of magnetometers is limited by the user's computer hardware.

File Co	nfigure View	r Dig	jitizer Ser	nsor	About	中文 🗌	COM Port Stat
	ULTA MENS Sensing	SíO the F	N uture	1. Se 2. Op 3. If c 4. Aff 5. Yo 6. Yo	elect a COM ben a COM desired, sel- ter desired p ou may close ou may retur	port with probe attach port ect a second COM port oorts are selected, pret e and select a different n to this page to chang	ed (not COM1) , and open it s: 'Continue' COM port te COM ports
						Port Sta	tus
Select Port 1	COM8	~	Open Port	Clos	se Port	Probe 1: Valid probe four	d
Select Port 2	COM9	~	Open Port	Clos	se Port	Probe 2: Valid probe four	d
Read Buffer	Serial Port 2 Openeo Hello Hello	1					^
							~
			Cont	inue			
			Exit Pr	ogra	m		

After pressing continue, traces for both magnetometers should appear in the chart, and the Read Buffer will show data for both magnetometers.

MultiDimension Technology USB Magneto	meter	– 🗆 X
File Configure View	Digitizer Sensor About	中文 🗌 COM Port Status
MULTI	Magnetic Field (Oe)	Default X
DIMENSION	20-10 10 20	
Read Buffer	39	0.00000
#2: RD 5.1780,0.002740 #1: RD 5.3075-0.285999	8	-0.28600
#2: RD 5.3074,0.000489 #1: RD 5.4370,-0.285999 #2: RD 5.4369,0.000845	95 J2	
Default ~ X ~		PP Off LPF On
Calibrate to Field Relative Offset	0.1	Probe 1
Manual Trigger Continuous		Probe 2
Dynamic Range Low Noise		
ADC Fast ADC Normal	te _0.3 /	
Autoscale On Autoscale Once	S -0.4	
Autoscale Off Clear Chart	-0.5 0 2	4
Pause Exit Program	Time (s	;)

Magnetometer Calibration

The magnetometer may be calibrated each use to correct offset and sensitivity. There are several methods to do this. The most convenient, which does not require any special equipment is an Earth's field calibration. To do so, select the "Calibrate to Field" button, and a window similar to that shown below will appear.

The calibration proceeds using a known reference magnetic field. The reference can be a calibration magnet, such as the MDTCAL01 used for high field calibration of magnetometers such as the TMR2510x series, or Earth's field for magnetometers such as the TMR2705x series.

For Earth's field calibration, the user needs to know the magnitude of Earth's field at his or her location, and that can be obtained from a website like The National Center for Environmental Information, which lists world-wide magnetic field values

http://www.ngdc.noaa.gov/geomag-web/?model=igrf#igrfwmm

So, for example if we look up a city in China, for example Nanjing, we get this result:

Magnetic Field							, ,
Model Used:	WMM2015						
Latitude:	32° 2' 53" N						_
Longitude:	118° 46' 8" E						
Elevation:	0.0 km Mean Sea	Level					
Date	Declination (+E -W)	Inclination (+D -U)	Horizontal Intensity	North Comp (+ N -S)	East Comp (+ E - W)	Vertical Comp (+ D - U)	Total Field
2016-02-23	-5° 31' 8"	48° 35' 48"	32,949.8 nT	32,797.1 nT	-3,168.9 nT	37,369.8 nT 🔨	49,821.6 nT
Change/year	-0° 4' 16"/yr	0° 5' 35"/yr	-30.6 nT/yr	-34.4 nT/yr	-37.7 nT/yr	87.7 nT/yr	45.5 nT/yr
Uncertainty	0° 17'	0° 13'	133 nT	138 nT	89 nT	165 nT	152 nT

The total field value listed at the top of the right most column is the value we need to use. We need to convert it to Oe for the USB Magnetometer. The conversion is simple.

So move the decimal point in the nT data 5 places to the left.

49,821.6 nT → 0.498216 Oe

Two minor points that can be helpful, although the user does not need to know this, understanding the meaning of the inclination and declination values listed in the left most columns can be helpful for determining if maximum and minimum field values are being performed in an area where there is no distortion. The second column indicates the angle of the magnetometer with respect to a level surface for which the maximum magnetic field magnitude will be observed is helpful when first trying to find the orientation of maximum and minimum magnetic field. The declination is the angle by which the magnetic field deviations from true north. So if you find the maximum and minimum values occur along an incorrect direction or at a weird angle with respect to a level surface, then the magnetic field at your location is probably being distorted by a magnetic object.

In any case, even without knowing the inclination and declination, the calibration procedure is:

- 1. Press the "calibrate to field" button.
- 2. Set the magnetic field value appropriate for your location (generally around 0.5 Oe)
- 3. Make sure both sensitivity and offset checkboxes are selected
- 4. Select the desired magnetometer and Press "Calibrate Selected"
- 5. Reset the chart in the calibration window
- 6. Swing the magnetometer around along the North-South axes in space to find the maximum and minimum voltage values, as shown in the sensor raw voltage plot on the right hand side of the window. The bottom left of the window will show the computed sensitivity and offset. The sensitivity should be close to the sensitivity value for the sensor, and in the case of TMR2705, in the range of 10 to 20 mV/V/Oe.

- 7. Press "Stop"
- 8. Save the calibration in either the flash for future use or just write the calibration to the sensor for immediate use only
- 9. Exit the calibration window
- 10. If the offset has not been adequately corrected, then perform one of the offset calibration procedures

Some tips for accurate calibration.

- Note also that the maximum magnetic field is usually not along an axis that is parallel to the floor. There is always a declination angle, and the maximum field may in fact be largest at a very steep angle.
- Make sure no ferromagnetic objects are nearby, so that the value of Earth's field is not distorted.
- North and South directions may be found using a compass or a cell phone's compass.

Calibration of USB2510x Series Magnetometers Using a Calibration Magnet

The CAL01 reference magnet provides a stable and convenient method to calibrate the USB2510x series magnetometers.

CAL01 IS NOT FOR USE WITH THE USB2705x MAGNETOMETERS.

The CAL01 reference magnet is composed of two axially magnetized permanent magnet rings that allow a magnetometer to access the working region of the fixture from both axial and transverse orientations, making the calibration fixture useful for both axial and transverse magnetometer calibration. The plots below show the peak field values when moving an axial magnetometer through the axial hole and when rotating the magnet around a transverse magnetometer in the transverse hole.

Transverse Magnetometer Calibration Procedure

- 1. Press the "calibrate to field" button.
- 2. Set the calibration field value to the magnetic field value indicated on the side of the calibration assembly
- 3. Make sure both sensitivity and offset checkboxes are selected
- 4. Insert transverse magnetometer all the way into the transverse magnetometer alignment hole.
- 5. Select the desired magnetometer and Press "Calibrate Selected"
- 6. Reset the chart in the calibration window
- 7. Rotate the magnet in order to sample the largest positive voltage and the largest negative voltage. The magnetometer can be wiggled and the magnet rotated back and forth around the field extreme angles in order to sample the maximum and minimum values.
- 8. Press "Stop"
- 9. Save the calibration in either the flash for future use or just write the calibration to the sensor for immediate use only
- 10. Exit the calibration window
- 11. If the offset has not been adequately corrected, then perform one of the offset calibration procedures

Axial Magnetometer Calibration Procedure

- 1. Press the "calibrate to field" button.
- 2. Set the calibration field value to the magnetic field value indicated on the side of the calibration assembly
- 3. Make sure both sensitivity and offset checkboxes are selected
- 4. Select the desired magnetometer and Press "Calibrate Selected"
- 5. Press Reset Chart
- 6. Push the axial magnetometer into the axial alignment hole to find the maximum positive (negative) voltage reading, you can wiggle the magnetometer some and move in and out of the calibration assembly to verify the maximum value has been sampled.
- 7. Hold the magnetometer steady and pull the calibration assembly away.
- 8. Flip the calibration magnet in order to reverse the magnetic field
- 9. Push the axial magnetometer into the axial alignment hole to find the maximum negative (positive) voltage reading, you can wiggle the magnetometer some and move in and out of the calibration assembly to verify the maximum value has been sampled.
- 10. Press "Stop"
- 11. Save the calibration in either the flash for future use or just write the calibration to the sensor for immediate use only
- 12. Exit the calibration window
- 13. If the offset has not been adequately corrected, then perform one of the offset calibration procedures
- **14.** If the offset has not been adequately corrected, perform one of the offset calibration procedures

Zeroing a Magnetometer

There are several methods that may be used.

- Autozero the magnetometer with the sensing axis aligned east-west
- Autozero the magnetometer inside a zero gauss chamber
- Manual offset
- Calibration method to permanently change the offset

Zeroing Based on Calibration Procedure

- 1. Press the "calibrate to field" button.
- 2. The Cal Field does not matter, any value will be fine
- 3. Make sure the sensitivity checkbox is **not** selected
- 4. Make sure the offset checkbox is selected
- 5. Place the sensor in a zero gauss chamber OR align the sensing axis along the east-west direction
- 6. Select the desired magnetometer and Press "Calibrate Selected"
- 7. Press Reset Chart
- 8. Acquire several seconds of voltage vs time data, verifying that the background value is stable
- 9. Press "Stop"
- 10. Save the calibration in either the flash for future use or just write the calibration to the sensor for immediate use only
- 11. Exit the calibration window

Information about Resolution and Noise

The resolution of a MDT USB Magnetometer is dependent on how it is configured. The user has control over the amplifier gain, the number of ADC bits, and the number of samples to be averaged. The resolution may be approximated as follows:

Resolution = $2*H_{sat}/2^{bits}$

Where H_{sat} is the saturation magnetic field of the USB Magnetometer.

In normal range, a USB2705x will saturate between 8 and 12 Oe, as shown above. Setting the wide "Dynamic Range" feature decreases the gain of the ADC preamp, and it will make resolution worse, which providing a larger operating range. Assuming ADC Normal and Low Noise are selected, the ADC is set to 16 bits, the SADC limited resolution will be

This can be improved by increasing the number of samples or by selecting a high bit count. These settings can be accessed in the Digitizer menu.

The sensor noise can be read directly from the magnetometer, if the magnetometer is placed in a very low noise environment or inside a magnetic shield. The RMS noise in the measurement bandwidth is the same thing as the standard deviation of the magnetic sensor signal. This measurement is available in the Digital viewing mode as shown below. There is variation from sensor to sensor, and a sensor that has been damaged may show higher noise. A superb USB2705x device will show RMS noise on the

order of 0.00025 Oe RMS. The noise can be improved by increasing ADC bit count or increasing the number of samples.

腦 MultiDimension Technology USB Magn	:tometer V4.0.1.0	– 🗆 X
File Configure Vie w	Digitizer Sensor About	中文 🗌 COM Port Status
Default		X
	070	
	·) /X	hX I
U.		JO
BD OK		185.0-
PPOI	· · · · · · · · · · · · · · · · · · ·	
Default 🗸	Maximum 0.27947 RMS	0.2789906 Same as RMS noise
Stats	Minimum 0.27837 Std. Dev. 0	
× ~	Average 0.2789905 Time	7.266113 Sensing the Future

The sampling speed is also dependent on Magnetometer configuration, and it can be measured using the Digitizer | Sampling Frequency button. Generally noise increase and resoltuin becomes worse as the speed is increased. In normal mode, a USB2xxx3 will sample at roughly 40 Hz.

In binary mode and with ADC Fast selected, a USB2xxx3 will reach over 250 Hz per channel.

USE MultiDimension Technology USB Magnet	tometer V4.0.1.0	- 🗆 X
File Configure View	Digitizer Sensor About	中文 🗌 COM Port Status
Enable LPF	Disable LPF	Command Line
Set ADC Bits	Dynamic Range	ADC Fast
Set ADC Samples	Low Noise	× NO House
Sampling Frequency	Return Probe 1	Sampling Frequency = 251.978 Hz
		Sensing the Future

As can be seen, MDT USB Magnetometers are extremely flexible and can be adapted to a user's specific measurement requirements.

Magnetometer Linearization

The USB Magnetometer uses a default linearization algorithm to extend the linear range of the TMR sensor. The linearization is performed prior to sending data over the USB port. The default linearization should be sufficient for most users. The parameters may however be changed by the user using the commands defined in the USB Port Programming section.

The linearized sensor output field is defined in a dimensionless format as

$$H_{cor} \left(\frac{Sensitivity}{1000}\right) = \sum_{i=0}^{5} A_i \left(\frac{V_{raw}}{V_{ref}}\right)^i$$

Where V_{raw} is the raw voltage from the sensor, V_{ref} is the bias voltage of the sensor, and V_{corr} is the linearized sensor voltage. A_i is a coefficient used for linearization. Typically for a TMR sensor, A₅>A₃>A₁ and A₀=A₂=A₄=0. A polynomial fit of the raw voltage response to this polynomial equation can provide the Ai coefficients for linearization.

Please contact jim.deak@dowaytech.com for details.

Magnetometer Orthogonality

The three-axis magnetometers have a built in orthogonalization correction feature. This is turned off by default. The sensors can be factory orthogonalized or corrected by the user. This procedure requires a special well-calibrated test fixture, and it is not advised for most users. MultiDimension can train users to do this task, or we can orthogonalize a magnetometer in our lab using a calibration fixture and custom software if needed.

Please contact jim.deak@dowaytech.com for details.

Exporting Data

Direct Export

The program can be made to export all data presently displayed in the H (Oe) vs. time (s) chart, by selecting the "File|Export Chart Data" menu entry. The number of data points to be stored may be controlled by changing the "Data Points" control at the right side of the "Field (Oe)" analog meter. The data chart may be cleared by pressing the "Clear Chart" button at the lower right side of the "Field (Oe)" analog meter. Data will be exported into CSV format, and the user may define the name and location of the data file. The data format is standard comma separated variable, and it can be accessed in most spreadsheet programs.

Data Logging

The program can additionally be made to export all data that is acquired by selecting "File|Data Logging" before beginning the measurement. This is useful for exporting data sequences with more than a few thousand points. When data logging, the USB Magnetometer GUI program buffers the data and dumps it to the file in multiples of 100,000 points. To guarantee all data is saved, exit the program without clearing data. The data format is standard comma separated variable, and it can be accessed in most spreadsheet programs.

Measurement Examples

The MDT USB Magnetometer is well suited for precision measurement of magnetic fields that occur in common engineering and scientific applications. Here are a few example measurements obtained using the MDT USB Magnetometer GUI and data export feature.

1. Field distribution around an AAA battery

Often it is desirable to deploy magnetic sensors in applications where the sensor must be powered by a battery in close proximity to the sensor. An example of this type of device would be a traffic or parking lot monitoring system. Unfortunately, typical batteries often are composed of ferrous materials that have a significant remanent magnetization. In effect, they behave like a weak permanent magnet. To further complicate the system design, magnetic sensor systems that are used for detecting the presence of automobiles often utilize sensors that saturate at a few Oe, which may be smaller than the remanent magnetic field of the battery. This can be corrected by a hard magnetization offset value added to the

sensor output, but only if the sensor is not saturated by the magnetic field. Also, the batteries cannot be shielded, since the magnetic shielding would probably also shield the magnetic field that the magnetic sensor needs to detect. So a practical question that the MDT USB magnetometer can answer is, where should the sensor be located with respect to the battery?

Here we look at the magnetic field along a line that is 5 mm from the edge of an AAA battery. The USB Magnetometer is set for 17 bit resolution, no LPF, 4X speed, manual trigger. Relative offset is used to zero the sensor at properly oriented positions far removed from the battery. The measurement is performed by taping an AAA battery to a piece of graph paper and manually triggering the sensor at specific positions along a line 5 mm distant from the edge of the battery.

Here are typical results.

The measured fields show that even at 5 mm from the battery, a remanent magnetic field exceeding 2 Oe can be present. This is strong enough that it could saturate high sensitivity magnetic field sensors, making hard magnetic correction impossible. Note also the magnetic field is not uniform.

2. A ferrous object moving past a stationary magnetometer

This next chart shows the magnetic field distortion produced by a metal cart moving past a desk.

In this case, the magnetometer was placed flat on a desk, aligned mostly along the east-west direction. A large metal cart was pushed by at a distance of about 1 m along the north-south axis. Data acquisition used 16 bit resolution with LPF turned on. The motion of the cart past the desk slightly bends the Earth's magnetic field into the East-West axis and produces a small signal.

Note the change in magnetic field at the 15 s mark as the cart was moved past. Detecting the presence of an object by looking for the distortions it produces in a magnetic field is a common tracking technique known as magnetic anomaly detection.

3. Hidden magnetic signature in a document

Here the magnetic field across the surface of a United States Passport cover is examined. The passport is held stationary, and the sensor is slid over the front and back cover of a US passport. It takes some practice to keep the magnetometer alignment stable if doing this manually, but it is not too difficult to master. What conclusion can be made?

Output Data Formats

The USB Magnetometer hardware can be used without the GUI software. The USB magnetometers may be accessed through a COM port using software such as the included terminal emulator, a program such as hyper terminal, or a custom program written by the user. The magnetometers may be operated using ASCII commands that are specified in the following sections. The returned data has the following formats, which can be parsed based on the header. Each line, where in ASCII of binary format, always starts with a 3 char header and ends with a two char "\r\n" sequence.

<u>ASCII</u>

The ASCII format sends all data using plain text starting with a header, followed by numbers separated by commas and terminated with an end of line string.

```
<Header>number,number,...,"/r/n"
```

The headers are defined as follows. The number of values in each line can be determined by counting the number of comma between the header and the end of line string.

Header (always 3 chars)	Meaning
RD <space></space>	time,H OR time,Hx,Hy,Hz
RV <space></space>	time,V OR time,Vx,Vy,Vz

<u>Binary</u>

The binary format is always a 3 character header, followed by an array of chars, and followed by " r^n .

```
<header><Array of bytes><\r\n>
```

The array of chars is based on floating point notation, where each floating point number is composed of four bytes. Floating point format is defined using IEEE-754 format. The binary string is always located between a header and end of line string. The array of bytes is always multiples of four bytes. Once the header is identified, the length of the byte array can be computed, and the numbers can be parsed based on byte location.

<u>Binary Algorithm</u>

The encoding and decoding is performed using a C union structure.

```
union binfloat {
    float num; // floating point number in IEEE754 format (4 bytes)
    byte bin[4]; // array of chars in the same address space as num
};
```

A simplified example of the algorithm is as follows:

Encoding – coming from the USB Magnetometer

binfloat bf; float val = <some number>; bf.num = val; Serial.Println(bf.bin);

Decoding – performed on a computer

binfloat bf; float val; Unsigned char instr[4]; instr = Serial.Readln(); bf.bin[0] = instr[0]; bf.bin[1] = instr[1]; bf.bin[2] = instr[2]; bf.bin[3] = instr[3]; val = bf.val;

The headers are defined as follows, where t_i, H_i, Hx_i, Hy_i, Hz_i, V_i, Vx_i, Vy_i, Vz_i are bytes.

Header (always 3 chars)	Meaning (4 chars per number)
BH1	$H_0H_1H_2H_3$
BH2	t ₀ t ₁ t ₂ t ₃ H ₀ H ₁ H ₂ H ₃
BH3	Hx ₀ Hx ₁ Hx ₂ Hx ₃ Hy ₀ Hy ₁ Hy ₂ Hy ₃ Hz ₀ Hz ₁ Hz ₂ Hz ₃
BH4	t ₀ t ₁ t ₂ t ₃ Hx ₀ Hx ₁ Hx ₂ Hx ₃ Hy ₀ Hy ₁ Hy ₂ Hy ₃ Hz ₀ Hz ₁ Hz ₂ Hz ₃
RV1	$V_0V_1V_2V_3$
RV2	$t_0 t_1 t_2 t_3 V_0 V_1 V_2 V_3$
RV3	$Vx_0Vx_1Vx_2Vx_3Vy_0Vy_1Vy_2Vy_3Vz_0Vz_1Vz_2Vz_3$
RV4	$t_0t_1t_2t_3Vx_0Vx_1Vx_2Vx_3Vy_0Vy_1Vy_2Vy_3Vz_0Vz_1Vz_2Vz_3$

Here is an example showing the ASCII and Binary encoded output of the same numbers. Consider sending the following numbers over a serial port.

float t = 10.023456; float hx = 0.123786; float hy = -0.350023; float hz = 0.0876543;

Binary encodes it with higher resolution using fewer characters.

ASCII →	RD 10.023,0.12379,-0.35002,0.08765	ightarrow 36 chars need to be sent
Binary \rightarrow	BH4` A"fý=76 ³ ¾" ³ =	ightarrow 21 chars need to be sent

The lower character count increases the speed of data transfer. However, please note that serial port communication over USB is heavily buffered, so there is no advantage to using the binary mode at sampling frequency of less than about 50 Hz. It will result in obvious jumping of the graph due to clustering the shorter data communications in packets.

USB Port Programming

The USB Magnetometer was designed to enable users to interface it with their own custom programs. This is useful for writing data acquisition programs, so the user can input data directly to a program without needed to export it from the USB Magnetometer GUI into Excel.

The USB magnetometer may be interfaced with any software language that is able to connect to a COM port and send and receive ASCII commands, including C/C++, Visual Basic, Java, Labview, etc. Additionally, the USB Magnetometer may be operated directly from a serial terminal such as Termite, HyperTerminal, RealTerm, etc, in order to test a sequence of commands or for actual use. A free copy of Termite can be found at http://www.compuphase.com/software_termite.htm.

The USB magnetometer hardware is defined as follows:

USB Connector

A TMR or other sensor at the end of a 1 m cable is used to detect the magnetic field, and it converts the magnetic field to a voltage value. The TMR sensor is biased by a temperature compensated voltage reference. The TMR sensor output is connected to an ADC, which digitally samples the voltage and sends the digital signals to the microcontroller over an I2C bus. The microcontroller converts the sampled sensor voltage to a magnetic field value using calibration coefficients stored within the non-volatile program Flash memory or the user reprogrammable EEPROM. When factory calibrated, the calibration coefficients are stored in EEPROM. These EEPROM values may be overwritten by the user. The microcontroller then sends the magnetic field value to the serial bus, which is connected to the FTDI231X Serial to USB convertor. The I/O of the FTDI231X Serial to USB convertor is a standard USB port. A driver on the computer is used to create a virtual COM port, which is then accessed through the MDT USB magnetometer GUI, a terminal emulator program, or other custom written program.

The startup sequence after reset or connecting the USB Magnetometer to a USB port is as follows:

- 1. Check the EEPROM to see if the EEPROM calibration is valid, if so load offset and sensitivity parameters to overwrite the default values in firmware
- 2. Check the EEPROM to see if the linearization coefficients are valid, if so, retrieve them from EEPROM and overwrite the default values in firmware
- 3. Send out welcome message
- 4. Report system status
- 5. Poll for USB port input

Serial Port Commands

The current list of serial port commands and information about interfacing the magnetometers can be found under the "About|Serial Port Commands" menu.

MultiDimension Technolo	ogy USB Magne	etometer V4.0.1.	.0			1. 		
File Configure	View	Digitizer	Sensor	About	中文		Port Sta	tus
In the commands magnetometer is initialized o into the EEPROM using sta that changing the EEPROM 60. The higher addresses n etc. To simply read a magnetic field data using de command.	described below r reset. Calibratic ndard commands i may adversely a nay be used for th nagnetometer, ei fault startup con	y, please note the on and other para s. Low level EEP affect magnetome he user's purpose ither send a "RC" ditions and stored	e magnetometers I ameters may be s ROM read and w eter operation. TH e, such as writing " or "RM" comma d calibrations. To	oad calibration valu et temporarily during rite access is also p re use should avoid custom parameters nd. This will cause stop reading in co	ues from a bui g runtime, or p provided, but d writing to an , identifying ir e the magneto ntinuous mod	iltin EEPROM orogrammed pu the user is ca uy address low oformation, usa pometer to return le, send a "PE	when the ermanently utioned er than age time, age time, '' or ''RM''	^
READ COMMANDS ===== These commands Read Manual	are used to tell t	the magnetomete	er what to read ar	d how to send it to	the COM Por			
READ COMMANDS ===== These commands Read Manual	are used to tell t	the magnetomete	er what to read ar	id how to send it to	the COM Por	rt.		~
READ COMMANDS ===== These commands Read Manual	are used to tell t	the magnetomete	er what to read ar	id how to send it to	the COM Por			~
READ COMMANDS ===== These commands Read Manual	e are used to tell t	the magnetomete Serial P Return	er what to read an	imands	the COM Por		Tí NSíON Ig the Futu	

The following pages list the commands used for configuring and reading the USB magnetometer.

	USB Magnetometer Serial Port Commands			
Command	Description	Firmware Subroutine		
OA	Automatically zero the voltage offset of the sensor.	CorrectOffset()		
	Overrides OM. This should be accomplished in a zero gauss			
	champer			
SIVI < n.nnn>	Manually input a sensitivity value in units of mv/v/Oe	ManualSensitivity()		
Ow <n.nnn></n.nnn>	OA	ManualOnset()		
RS	Automatically find the offset field. This command	RelativeSet()		
	remembers the previous offset field. Calling RO will			
	remove the offset value and restore the state prior to calling RS.			
RO	Removes the offset field value calculated during the RS	RelativeOff()		
	command. It restores the state prior to calling RS.			
РС	Display the calibration parameters presently being used by the magnetometer	PrintCal()		
	Set oversampling in order to achieve a desired number of	SetDigitizerBits()		
	hits (N) or resolution for the ADC N is any integer greater			
	than 10, and for practical measurement it should not			
	exceed 18, due to the low effective sampling rate at high			
	oversampling. Increasing N decreases noise.			
RM	Set the magnetometer to one-shot trigger mode.	ManualRead()		
	Successive calls to RM will result in a single read. This is			
	useful for situations where a user may want to slowly move			
	the magnetometer past a series of fixed locations around a			
	magnetic object, or in the case where the ADC resolution is			
	very high and read time is very long. Overrides the RC and			
	VC commands.			
VM	Same as RM, except the magnetometer will output the	ManualReadVoltage()		
	uncorrected voltage of the sensor. Overrides the RC and VC			
	commands.			
RC	Set the magnetometer to continuous read mode. Overrides	ContinuousRead()		
	the RM and VM commands.			
VC	Same as the RC command, except the output will be the	ContinuousReadVoltage()		
	uncorrected voltage of the sensor. Overrides the RM and			
	VIVI commands.			
ID <0 or 1>	Turn the low pass filter on (1) or off (0):	SetFilterMode()		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SetFiller MOUE()		

Command	Description	Firmware Subroutine
SS <string></string>	Write the sensor serial number and other identifying	SetSensorCodeEEPROM()
	information to the EEPROM. The maximum <string></string>	
	length is 32 ASCII characters.	
GS	Query the sensor ID code.	GetSensorCodeEEPROM()
LS	Enable linearization of the sensor data (default)	SetLinearization()
LO	Disable sensor linearization	RemoveLinearization()
PE	Pause execution, but do not change the system	Pause()
	settings. Pause the state of the magnetometer.	
RE	Resume execution without changing system settings.	Resume()
н	Used to test for the presence of a USB magnetometer	QueryProbe()
	at a particular port number. The valid response from	
	the USB magnetometer is "Hello".	
OW <n.nnn></n.nnn>	Directly write a user specified offset value in units of	WriteOffsetEEPROM()
	volts to the USB magnetometer EEPROM.	
OR	Query the offset value stored in the EEPROM.	ReadOffsetEEPROM()
SW <n.nnn></n.nnn>	Directly write a user specified sensitivity value in units	WriteSensitivityEEPROM()
	of mV/V/Oe to the USB magnetometer EEPROM.	
SR	Query the sensitivity value stored in the EEPROM.	ReadSensitivityEEPROM()
AR	Read linearization coefficients stored in the EEPROM	ReadLinEEPROM()
AM <m> <n.nnn></n.nnn></m>	Set present linearization coefficient Am to value	AManual()
	n.nnn. Must follow with EA to store in EEPROM.	
CV <0 or 1>	Set the calibration valid flag in the EEPROM. Once set,	CalValid()
	the USB magnetometer will read the calibration	
	parameters stored in the EEPROM at startup, rather	
	than using the default value stored in firmware. 0 =	
	not valid, and 1 = valid (default).	
LV <0 or 1>	Set the linearization valid flag in the EEPROM. Once	LinValid()
	set, the USB magnetometer will read the calibration	
	parameters stored in the EEPROM, rather than using	
	the default value stored in microcode. 0 = not valid	
	(default), and 1 = valid.	
ES	Write the sensitivity value presently being used to the	WrtCalSlopeEEPROM()
	EEPROM. For example, the magnetometer has been	
	calibrated using the SM command, that sensitivity	
	value will not be stored in EEPROM by default.	
EO	Write the offset value presently being used to the	WrtCalOffsetEEPROM()
	EEPROM. For example, the magnetometer has been	
	calibrated using the OM command, that sensitivity	
5.	value will not be stored in EEPROM by default.	
EA	Write present linearization parameters to the	WriteLinEEPROM()
AB <0 or 1>	Set output to binary (1) or default ASCII (0)	SetASCIIBinary()
15 <0 or 1>	I urn timestamp on (1) default or off (0)	SetTimeStamp()
PG <1,2,4,8>	Set the preamplifier gain	SetPGA()
QQ	Soft reset of the USB Magnetometer.	psuedoReset()

Serial Port Operation Using a RS-232 Terminal Emulator

The MDT USB Magnetometer may be operated directly from a terminal emulator program. The terminal emulator programs should be configured as in the following figure, except that the COM port number might be different. The examples below use Termite.

Port configur	ation	Transmitted text	Options
Port	COM34	Append nothing	Stay on top
Baud rate	115200	 Append CR Append LF 	Quit on Escape Autocomplete edit line
Data bits	8	Append CR-LF	Keep history
Stop bits	1	Local echo	
Parity	none	Polling 1 ms	Plug-ins
Flow control	none	Font default	
Forward	none	Word wrap	

Upon connecting, the USB Magnetometer should reset and display a message similar to the following.

To stream the measured field value in units of Oe, simply send an "RC" command.

The two numbers after the RD token are time in units of seconds, and magnetic field in units of Oe. When swinging the magnetometer around in space, if there are no distortions of Earth's field, the maximum and minimum field values should be approximately ± 0.5 Oe.

To stop continuously reading the magnetometer, issue a "RM" command. This initiates manual read or "one shot" mode.

Termite 3.2 (by CompuPhase)	
COM40 115200 bps, 8N1, no handshake	Settings Clear About Close
RD 113.0604,-0.882627	*
RD 113.3199,-0.883312	
RD 113.4497,-0.882629 RD 113.5794 -0.882492	
RD 113.7092,-0.882465	
RD 113.8389,-0.882459 RD 113.9687,-0.886697	
RD 114.0984,-0.883306	
RD 114.3579,-0.883339	
Manual Read BD -0 887756	
	(+)

Successive calls to the RM command will provide a single read. This is useful for precision measurements of a field at a stationary point, for example, if measuring the field distribution around a magnetic object. The precision of the measurement may be improved by increasing the number of samples or increasing the ADC resolution. For example, the samples could be increased to 100 by issuing an "NS 100" command.

Termite 3.2 (by CompuPhase)	
COM40 115200 bps, 8N1, no handshake	Settings Clear About Close
RD 113.1901,-0.886730	<u>^</u>
RD 113.3199,-0.883312 RD 113.4497,-0.882629	
RD 113.57940.882492	
RD 113.7092,-0.882465	
RD 113.9687,-0.886697	
RD 114.0984,-0.883306 RD 114.2281-0.886866	
RD 114.3579,-0.883339	
Manual Read BD -0 887756	
ADC Samples: 100	
	-
Í	(+)

Then after issuing a "RM" command, 100 samples will be averaged, and the resulting precision will be higher. It will however take longer to acquire the data point.

🚾 Termite 3.2 (by CompuPhase)		
COM40 115200 bps, 8N1, no handshake	Settings Clear About	Close
RD 113.3199,-0.883312 RD 113.4497-0.882629		*
RD 113.5794,-0.882492		
RD 113.7092,-0.882465 RD 113.8389,-0.882459		
RD 113.9687,-0.886697		
RD 114.2281,-0.886866		
RD 114.3579,-0.883339 Manual Read		
RD -0.887756 ADC Samples: 100		
RD -0.882458		
		-
		(H)

Depending on the terminal emulator program that is being used, data can be exported to a file or cut and pasted into a spreadsheet. Most of the functions available in the GUI can be performed in text mode using a terminal emulator program. The USB magnetometer can be run in this manner on any computer of portable device that has standard COM port drivers.

Custom Software Development

Any programming language that can access a COM port in order to send and receive ASCII data may be used to write a custom interface for the USB Magnetometer. The user may explore the operation of the various commands by using a terminal emulator. Likewise, as long as the USB port can be accessed, and the proper cable is used, programs may be written for mobile devices and tablets. An example terminal emulator program written in Labview and compatible with the standard firmware is shown below.

Serial Port Emulator User Interface

Block Diagram

Custom Firmware Development

The MDT USB Magnetometer is designed so that custom firmware can be easily uploaded to the microcontroller flash memory through the USB port. This is useful for exploring algorithms for and applications of MDT TMR sensors. In order to make this easy for the user, the USB magnetometer is hardware is compatible with the popular open source Arduino Uno board, and thus the Arduino programming environment or Atmel microcontroller development tools. The user may develop custom firmware at his/her risk. The hardware is relatively bullet proof.

The following is the basic information that the user needs to know:

- The microcontroller is an Atmel ATMEGA328P with Arduino boot loader, and it may be programmed using the open source Arduino Development Suite with UNO board settings.
- The ADC is a Texas instruments ADS1100 or ADS1114 interfaced with an I2C bus
- The reference voltage of the sensor is fixed 4.0 V
- The MDT TMR sensor outputs are connected to analog inputs of the ADC
- The power LED is connected to USB V_{cc.}
- The Tx/Rx LED is connected to the ATMEGA328 Tx/Rx line
- The Serial to USB convertor is a standard FTDI231X chip. No special drivers are needed.

Details of the Arduino C programming language and development environment may be found at <u>https://www.arduino.cc/en/Reference/HomePage</u>. A simple Arduino C program for streaming sensor output to the USB port of a single-axis USB2705A, USB2705T, USB2510A, or USB2510T is provided here:

```
* Read TMR sensor voltage, convert to Oe, and stream to USB port
 *****
#include <Wire.h> // used for I2C bus
#define ADC B1001010 // 7bit I2C address of ADC
// configure sensor
float sensitivity = 5.0; // sensitivity calibration in units of mV/V/Oe --> needs to be changed
float offset = -0.011475; // offset calibration in units of volts --> needs to be changed
// configure measurement
int NumSamps = 1; // number of samples to be averaged
int gain = 1; // valid options are 1,2,3,4
int bits = 16; // valid options are 12, 14, 15, and 16
// do not change
float SensorVoltage; // output voltage of the sensor
float Vref = 4.0; // Sensor Reference voltage
float Hout;
                  // measured field
void ConfigureADC(int bits, int PGA, int Continuous, int RequestData) {
  /***************
  * Routine used to configure the ADC
  unsigned int bCom = 0x00;
  // set the number of bits and datarate
 switch (bits) {
   case 12: bCom = bCom | 0x00; break; // 12 bits, 128 bps
  case 14: bCom = bCom | B00000100; break; // 14 bits, 32 bps
  case 15: bCom = bCom | B00001000; break; // 15 bits, 16 bps
   case 16: bCom = bCom | B00001100; break; // 16 bits, 8 bps
   default: bCom = bCom | B00001100; // 16 bits, 8 bps
 }
```

```
// set the PGA gain
 switch (PGA) {
   case 1: bCom = bCom | B00000000; break; // gain = 1
   case 2: bCom = bCom | B00000001; break; // gain = 2
   case 4: bCom = bCom | B00000010; break; // gain = 4
   case 8: bCom = bCom | B00000011; break; // gain = 8
   default: bCom = bCom | B00000000;
                                       // gain = 1
 }
 // set continuous/single mode
 switch (Continuous) {
   case 0: bCom = bCom | B00010000; break; // single
   case 1: bCom = bCom | B00000000; break; // continuous
 1
 // this is used in single conversion mode to request a read
 switch (RequestData) {
   case 0: bCom = bCom | B00000000; break; // single
   case 1: bCom = bCom | B10000000; break; // continuous
 }
 // write the command
 Wire.beginTransmission(ADC);
   Wire.write (bCom);
 Wire.endTransmission();
}
float ReadSensor(int Nbits) {
 * Routine used to read the ADC.
  * bits must be > 11, <17, and <> 13
  float Vout;
 byte highbyte, lowbyte, configR;
 Wire.requestFrom(ADC, 3);
 while(Wire.available()) // ensure all the data comes in
 {
   highbyte = Wire.read(); // high byte
   lowbyte = Wire.read(); // low byte
   configR = Wire.read();
 1
 // divide by the PGA gain and scale based on ADC bits
 Vout = (highbyte * 256 + lowbyte)/gain * scale(Nbits);
 delay (SetDelay (bits)); // dependent on ADC bits
return Vout;
}
```

```
float SetDelay(int Nbits) {
  // used for ads1100, see datasheet for details
  float ftmp;
  switch (Nbits) {
   case 12: ftmp = 7.0; break;
   case 14: ftmp = 31.0; break;
   case 15: ftmp = 63.0; break;
   case 16: ftmp = 125.0; break;
   default: ftmp = 125.0; break;
  }
 return ftmp;
}
float scale(int Nbits) {
  // conversion used for digital resolution
  float ftmp;
  switch (Nbits) {
   case 12: ftmp = 1.0/2048.0; break;
    case 14: ftmp = 1.0/8192.0; break;
   case 15: ftmp = 1.0/16384.0; break;
   case 16: ftmp = 1.0/32768.0; break;
   default: ftmp = 1.0/32768.0; break;
 }
  return ftmp;
}
void setup() {
  Serial.begin(9600); // initialize serial communications at 9600 bps:
  Wire.begin();
                     // open communication with ADC
 delay(10);
  ConfigureADC (bits, gain , 1, 0); // ADC @ 16-bits, 8bps, continuous conversion
}
void loop() {
 int i;
  float tmp = 0.0;
  // read and average the analog voltage of the sensor
  for (i=0; i<NumSamps; i++) tmp += (float)ReadSensor(bits);</pre>
  SensorVoltage = Vref*tmp/(float)NumSamps;
                                                             // Sensor voltage
  Hout = (SensorVoltage-offset)*1000.0/sensitivity/Vref; // Convert voltage to field
  // print the results to the serial monitor
  Serial.print("H = "); Serial.print(Hout, 6);
  Serial.print(" Oe, V = "); Serial.println(SensorVoltage, 6);
 delay(2); // optional delay to slow down the serial output
}
```

Output from this program should appear as follows:

00 COM40		×
Ι	Sen	d
H = 0.384922 Oe,	V = -0.016602	-
H = 0.384922 Oe,	V = -0.016602	
H = 0.384922 Oe,	V = -0.016602	
H = 0.384922 Oe,	V = -0.016602	
H = 0.384922 Oe,	V = -0.016602	
H = 0.384922 Oe,	V = -0.016602	
H = 0.384922 Oe,	V = -0.016602	
H = 0.384922 Oe,	V = -0.016602	
H = 0.384922 Oe,	V = -0.016602	
H = 0.378818 Oe,	V = -0.016724	
H = 0.378818 Oe,	V = -0.016724	
H = 0.384922 Oe,	V = -0.016602	
H = 0.384922 Oe,	V = -0.016602	
H = 0.378818 Oe,	V = -0.016724	
H = 0.384922 Oe,	V = -0.016602	=
		-
V Autoscroll	No line ending 🕒 9600 baud	•

The user will need to set the appropriate sensitivity and offset values, but this program can provide the starting point for custom firmware development. The single-axis magnetometers use a Texas Instruments ADS1100 ADC, and the three-axis magnetometers use three Texas Instruments ADS1114 ADCs. These are all connected to the same I2C bus, and the address can be found by issuing a "PS" command. Here for example is the response for a three-axis magnetometer.

X: 1111111 @ Address: 1001001 Y: 1111111 @ Address: 1001011 Z: 1111111 @ Address: 1001000 Filt 1 0.90 0.10 Orth: 0 Lin: 1 PGA: 8.00

In the future, the single-axis magnetometers may be upgraded to ADS1114. In any case, knowledge of the ADC type, address, I2C communication protocol, and the microcontroller type along with the free Arduino development software is all that is needed for custom firmware development. Have fun!

Provided the magnetometer has not been bricked, the MDT USB Magnetometer may be restored to original operation and compatibility with the MDT measurement GUI by uploading a compiled version of the standard firmware from MDT's website. Note, uploading custom firmware does not change the calibration coefficients stored in EEPROM. If the calibration coefficients were overwritten by the custom firmware, then it is best to perform a "Restore to Factory Defaults" operation as described in the *Reset to Factory Defaults Submenu* section.

Updating USB Magnetometer Firmware

The USB magnetometers are designed such that firmware upgrades can be uploaded by the user. This is useful for upgrading or in the case custom firmware was uploaded and it is necessary to revert back to factory firmware. Firmware revisions are provided on MDT's USB magnetometer website from time to time if improvements are made or in response to customer requests. The upload may be accomplished using the Arduino programming environment with settings appropriate for an Arduino Uno or using a program such as XLoader. XLoader is recommended for simplicity.

https://sourceforge.net/projects/xloader/

Hex file	
C:\Users\Desk	top\XLoader\M
Device	
Uno(ATmega32	:8) ~
COM port	Baud rate
COM22	~ 115200
Upload	About

The upload procedure is as follows:

- 1. Download the appropriate firmware image from MDT's website.
- 2. Open XLoader, and set it for Uno
- 3. Plug the USB Magnetometer into a USB port, and select the appropriate COM port in the XLoader interface
- 4. Set the baud rate for 115200
- 5. Press "Upload".
- 6. Wait until the upload is finished. You may see the LEDs in the USB Magnetometer case flashing during the upload.
- 7. Open the USBMag program and test the sensor. It should have retained the old calibration factors.

If the sensor was programmed with the wrong firmware, it may still be possible to upload the correct firmware. Make sure the right firmware is selected, and try again. If there are any problems, please contact <u>jim.deak@dowaytech.com</u> for questions.