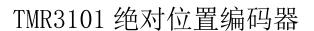


1024 线磁绝对位置编码器

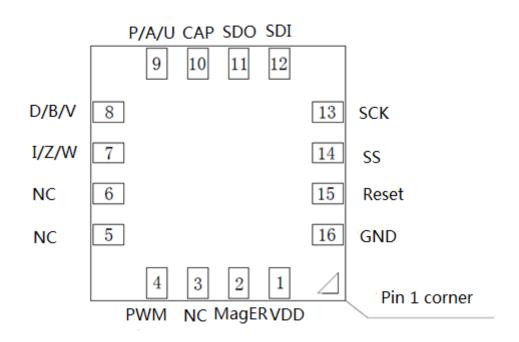
1 概述

TMR3101 是一款非接触式磁阻绝对位置编码器,可用于精确测量单圈360°内的任意角度,也可输出脉冲信号,作为增量式编码器使用。TMR3101 非接触式磁绝对位置编码器由隧道磁电阻 (TMR) 角度传感器和数字处理芯片集成而成。配合径向充磁的磁铁,可完成360°角度测量和转速测量。输出分度1024线,角度分辨率可达0.35°。可以扩展的思想。


选脉冲调制输出(PWM)、串行数字输出(SPI)、双相脉冲/零位输出、单相脉冲/零位/方向输出、三相UVW输出等输出方式。

1.1 优点

- 360°角度检测
- 非接触式测量,适用于复杂工作场合
- 超宽的工作磁场范围,实现卓越的抗抖动性能
- 传感器工作在饱和区,具备卓越的抗干扰能力
- 最小分辨率: 0.35°
- 多种输出方式---SPI、PWM、ABI、UVW、PDI
- 高速 SPI 总线 (5MHz)
- 高速 PWM 刷新速率
- 绝对角度输出---10bit@3000RPM 连续实时角度输出
- 增量输出模式---1024 线@10000RPM 转速检测
- 脉冲周期变化率<10%
- 温度使用范围: -40℃~125℃
- 小型 LGA 封装 (5mm*5mm*0.9mm)


1.2 应用

- 单圈/多圈绝对位置编码器
- 非接触式旋转位置检测
- 方向盘位置检测
- 油门位置检测
- 前面板旋转开关
- 等

引脚配置 2

2.1 引脚说明

引脚符号	符号	类型	引脚描述
71 WALAN A	, , ,		
1	VDD	S	3. 3V 电源输入
2	MagER	DO	磁铁位置检测,高电平为磁铁位置不正确
			$(400^{\sim}9000e)$
3	NC		保持悬空
4	PWM	DO	角度 PWM 输出
5	NC		保持悬空
6	NC		保持悬空
7	I/Z/W	DO	Mode1:角度为0信号,Mode2:Z,Mode3:W
8	D/B/V	DO	Mode1:旋转方向信号, Mode2:B,Mode3:V
9	P/A/U	DO	Mode1:角度脉冲输出,Mode2:A,Mode3:U
10	CAP		接 10uf 电容
11	SD0	DO	SPI 的主机输入/从机输出数据线
12	SDI	DI	SPI 的主机输出/从机输入数据线
13	SCK	DI	SPI 的串行时钟线
14	SS	DI	SPI 的从机选择,低电平有效
15	Reset		上拉 10K 电阻
16	VSS	S	电源地(GND)

类型定义:

S:电源, DI:数字输入, DO:数字输出

DIMENSION Sensing the Future

TMR3101 绝对位置编码器

3 电气特性

3.1 极限参数(非工作条件)

特征	符号	条件	限值	单位
工作电压	VCC	TJ=25 ℃	4	V
输入电流	Iscr	TJ=25 ℃	60	mA
外磁场强度	Hext	TJ=25 ℃	2000	0e
ESD性能	VESD		2	KV
使用温度	Tstg		-40 [~] 125	° C

3.2 工作条件

参数	符号	最小值	典型值	最大值	单位
环境温度	T	-40		125	° C
供电电流	Icc		42	60	mA
供电电压	Vcc	3	3. 3	3. 6	V

3.3 数字输入和输出的直流特性

3.3.1 CMOS 施密特触发器输入: SCK, SS, SDI

符号	参数	最小值	典型值	最大值	单位
Vih	高电平输入电压	0.8 * VDD			V
Vil	低电平输入电压			0. 3 * VDD	V
Ileak	输入漏电流	-1		1	uA
Ii1	上拉低电平输入电	150	250	550	uA
	流				

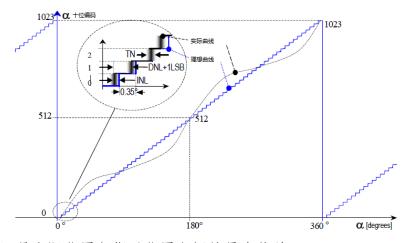
3.3.2 CMOS 漏极开路输出: SDO, Index, Direction, Plus, MagER

符号	参数	最小值	典型值	最大值	单位
Vol	低电平输入电压			0. 3 * VDD	V
Io	输出电流			8	mA
Ioz	漏极开路漏电流	-1		1	uA

3.3.3 CMOS 输出 (PWM)

符号	参数	最小值	典型值	最大值	单位
Voh	高电平输入电压	0.8 * VDD			V
Vol	低电平输入电压			0. 3 * VDD	V
Io	输出电流			8	mA

 江苏多维科技有限公司
 Ver. A
 3 of 12

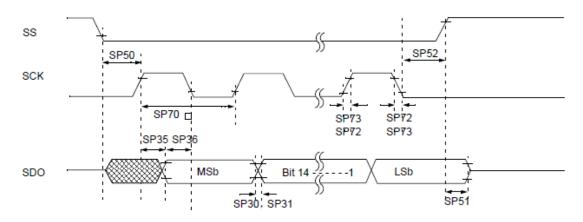

3.4 磁输入规格 (工作条件: =-40 至 125 °C, VCC=3.3V), 两极圆柱状径向磁化磁源

参数	符号	最小值	典型值	最大值	单位	注释
直径	dmag	6	8	10	mm	推荐磁铁: Ø 8mm x
厚度	tmag		2. 5		mm	2.5mm 圆柱形磁铁
磁输入场强	Bpk	400	700	900	GS	平行于芯片表面的
						水平分量磁场强度
磁偏差	Boffset	-100		100	GS	恒定杂散磁场
场非线性度				5	%	包括偏差梯度
输入频率	Fmag_abs			50	Hz	绝对值模式 3000rpm
	Fmag_inc			83	Hz	增量模式 10000rpm
偏离半径	Disp			0. 25	mm	
推荐的磁铁材			-0. 12		%/K	NdFeB(钕铁硼)
料和温度漂移						

3.5 电气系统规格

参数	符号	最小值	典型值	最大值	单位	注释
分辨率	RES			10	bit	0. 352°
积分非线性	INL			± 1.4	deg	最佳拟合曲线=(ERRmax-ERRmin)
						/2, 采用 8mm 直径的磁铁。温度在
						-40 到 125℃
磁滞	Hyst		0.704		deg	仅增量模式
转换噪声	TN			0. 12	deg	
上电时间	tpwup		110		ms	
增量模式输出延				50	us	超过2点采样
迟						
绝对值输出的采	fs		50		KHz	
样率						
读出频率	SCK			5	MHz	读出串行数据的最大时
						钟频率

电气规格注释:


积分非线性 (INL) 是实际位置与指示位置之间的最大偏差。 差分非线性 (DNL) 是从 1 个位置至下 1 个位置的步长的最大偏差。

转换噪声(TN)是指示位置的重复精度。

3.6 时序特性

同步串行接口 (SPI)

参数	符号	最小值	典型值	最大值	单位	注释
SP70	FscP			5	MHz	最大 SCK 输入频率
SP72/SP73	TscF/TscR		5	10	ns	SCK 上升/下降时间
SP30/SP31	TdoF/TdoR		5	10	ns	SD0 数据输出上升/下
						降时间
SP35	TscHdoV		6	20	ns	SCK 边沿之后 SDO 数据
						输出有效时间
SP36	TdoVscH	30			ns	SDO 数据输出建立到出
						现第一个SCK边沿的时
						回
SP50	TssLscH	120			ns	SS(低电平)到SCK上
						升输入的时间
SP51	TssHdoZ	10		50	ns	SS (高电平) 到 SDO 输
						出高阻态的时间

脉宽调制输出

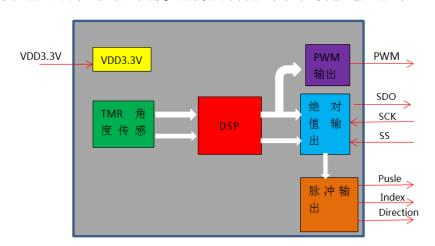
参数	符号	最小值	典型值	最大值	单位	注释
PWM 频率	f		32. 3		KHz	
最小脉冲宽度	PW min		30. 1		ns	位置 0d,角度 0度
最大脉冲宽度	PW max		30. 9		us	位置 1023d,角度
						359.65 度

脉冲 (Pulse) 输出

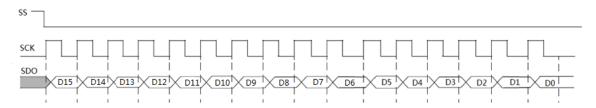
参数	符号	最小值	典型值	最大值	单位	注释
脉冲频率	f	16	17	18	KHz	转速 1000 转/min
脉冲输出均匀	Duty	0	5	7	%	2 (tmax-tmin) /
度						(tmax+tmin)

江苏多维科技有限公司

Sensing the Future

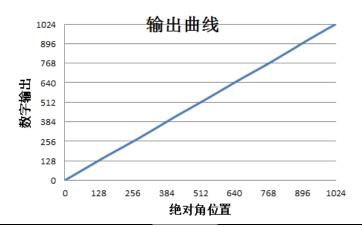

TMR3101 绝对位置编码器

4 功能说明


芯片采用了 TMR 技术, 用于检测芯片表面上的磁场分布, 内置的 TMR 元件能够产生一个 表征芯片表面磁场的电压。通过模拟/数字转换技术和数字信号处理算法,可提供精确的高分 辨率绝对角度信息。

采用一块小型, 低成本, 径向磁化(双极)标准磁铁, 即可提供角度位置信息。

该芯片能够检测磁场的方位,并计算出10位二进制编码,可以通过串行接口读取此编码 值,此外,还可以输出代表绝对值角度的脉宽调制信号以及模拟电压信号。

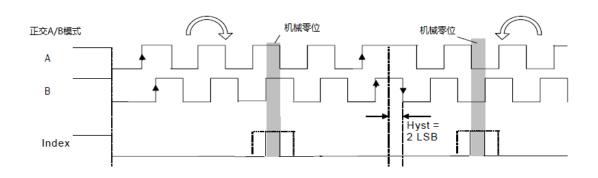


4.1 SPI 10 位绝对值角位置输出

- 如果 SS 变成逻辑低电平,数据输出(SDO)将从高阻态(三态)变成逻辑高电平,并启 动读取操作。
- 每个后续的 SCK 上升沿将移出一位数据
- 串行字包含10位,数据高位在前,低位在后

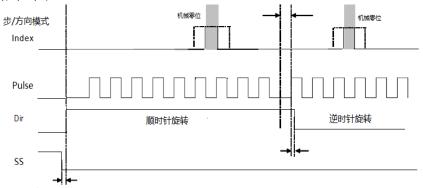
绝对值角度位置的采样速率为 50KHz, 这样就可以在 0.02 秒内读取 360 度范围的全部 1024 个位置 ($\approx 50 \text{Hz}$), 而不会错失任何位置, 将 50 Hz 乘以 60, 结果得出对应的最大旋转速率为 3000rpm.

江苏多维科技有限公司

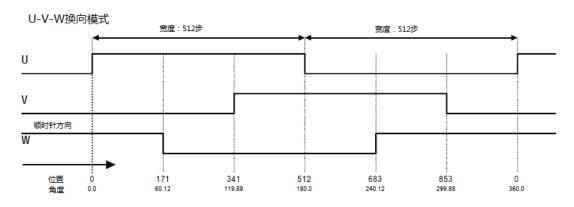

Ver. A 网址 www.dowaytech.com , 电子邮件: info@dowaytech.com

4.2 增量输出

4.2.1 正交 A/B 输出(正交 A/B 模式)


通道 A 与通道 B 之间的相移指示了磁铁运动的方向。磁铁顺时针(俯视)旋转时,通道 A 超前通道 B 角度 90°,逆时针方向旋转时,通道 B 的相位超前于通道 A 90°相位。

4.2.2 步/方向


Dir 输出提示磁铁旋转的方向信息,磁铁可以安装在器件的上方或者下方(1=顺时针;0=逆时针;俯视)。

Index 脉冲用于指示零位.

4.2.3 无刷直流电动机换向模式

无刷直流电动机要求获得角度信息以实现定子换向。TMR3X00 能够为具有一对磁极的电动机提供 U-V-W 换向信号。

江苏多维科技有限公司 网址 www.dowaytech.com , 电子邮件: info@dowaytech.com 中国江苏 张家港保税区广东路 7 号 邮编 215634

4.2.4 增量输出模式切换

通过四线 SPI 接口,修改寄存器值可切换增量输出模式: ABI/PDI/UVW(正交 A/B 输出,步/方向输出和无刷直流电机换向输出),芯片上电以后,初始模式是 ABZ,模式切换如下所示。

当 SDI 口输入 0xaa13,模式选择 1, SDO 返回 0xaa13,此时芯片工作在步/方向模式,即 Index输出角度为 0 信号, Direction输出旋转方向信号, Pulse输出角度脉冲。

当 SDI 口输入 0xaa11,模式选择 2,SD0 返回 0xaa11,此时芯片工作在正交 A/B 输出模式,即 Index 输出 Z 信号,Direction 输出 A 相信号,Pulse 输出 B 相信号。

当 SDI 口输入 Oxaa12,模式选择 3,SDO 返回 Oxaa12,此时芯片工作在 U/V/W 输出模式,即 Index 输出 U 信号,Direction 输出 V 信号,Pulse 输出 W 信号。

当 SDI 口输入 0xaa5a,模式设置结束,SD0 返回 0x005a,此时会把设置好的内容存储在寄存器中,下次上电时不需要再重新设置。

输出模式	引脚 7	引脚 8	引脚 9
1 正交	Index	В	A
2 步/方向	Index	Direction	Pulse
3 换向	W	V	U

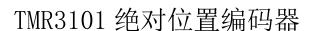
4.2.5 零点编程自定义

进行零位编程时,磁铁可以转至机械零位,并读取实际的角度数值,将此数值写入寄存器即可,具体操作如下。

当 SDI 口输入 0x0000, 读取实时角度数值, SDO 输出实时角度数值, SDI 口输入 0xaa55, 设置零点, 此时 SDO 返回 0x0055。零点设置完成, 此时该位置就是新的零点。这个新的绝对零点也是增量输出模式新的 Index 脉冲位置。

4.2.6 自校准功能开关

使用 SPI 指令可以开启或关闭上电自校准功能,用户可以在首次上电后通过 SPI 端口发送 0xaa33 指令重新校准,然后发送 0xaa35 保存校准数据,关闭自校准功能,之后芯片将调用 上次校准的参数进行角度计算。如磁铁,安装位置发生改变时,用户可以通过 SPI 端口发送 0xaa33 指令重新校准。


4.2.7增量输出滞回

磁铁处于静止位置时, 为了避免增量输出产生抖动, 引入了一个滞回。

当旋转方向改变时,增量输出具有 2 个 LSB 的滞回, 2 个 LSB 的滞回量总是对应于 10 位的最高分辨率,从绝对值角度看,这个滞回为 0.704 度。

江苏多维科技有限公司Ver. A8 of 12网址 www.dowaytech.com , 电子邮件: info@dowaytech.com多维科技

中国江苏 张家港保税区广东路 7 号 邮编 215634

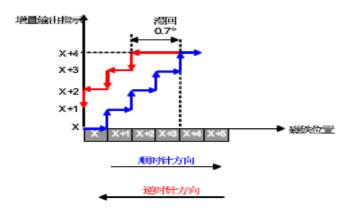
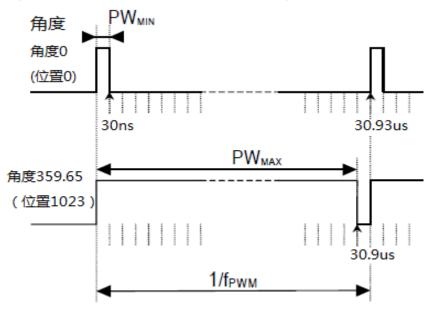
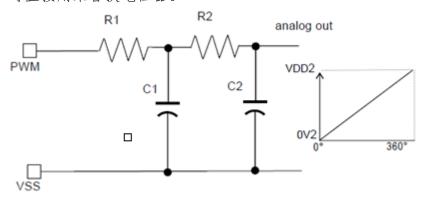



图 9: 增重输出的滞回窗口


4.3 脉宽调制(PWM)输出

该产品提供一路脉宽调制输出,其占空比与所测得的角度成正比:

PWM 转换模拟输出

通过使用外部有源或者无源低通滤波器来对 PWM 信号取平均值,可产生模拟输出,模拟输出电压与角度成正比,0°=0 V,360°=VDD3.3V.通过这种方法,可直接用来替换电位器。

江苏多维科技有限公司

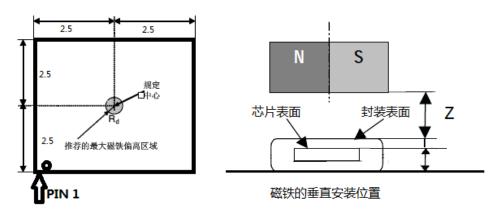
Ver. A

9 of 12 多维科技

网址 <u>www.dowaytech.com</u> ,电子邮件: <u>info@dowaytech.com</u> 中国江苏 张家港保税区广东路 7 号 邮编 215634

大数值的 Rx 和 Cx 能够提供更好的滤波效果和更小的纹波, 但会延长响应时间。

5. 磁铁选配及安装


5.1 选择合适的磁铁

典型情况下,磁铁的直径应当为 8mm,厚度应当>=2.5mm,磁铁的材料建议采用稀土 AlNiCo, SmCo5 或者 NdFeB.

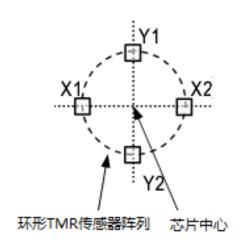
应当采用高斯计来核实磁铁水平于芯片表面方向的磁场强度, 磁场 B 应当在±400GS 到 ±900GS 范围之内。

5.2 磁铁的物理安装

如下图所示,将磁铁中心精确的放置在 IC 封装的中心上方时,可获得最佳的线性度。

磁铁的安装

磁铁的中心轴线应当对准 IC 的规定中心处半径 Rd (Rd=0.25mm) 的范围之内,垂直间距应当 选择为能够使芯片表面的磁场处于规定的范围之内(400 到 900GS),采用推荐的磁铁 (8mm*2.5mm) 时,磁铁与封装表面的典型间距"Z"为 1.3mm 到 2.5mm。只要所要求的磁场 强度能够保持在规定的范围内,也可以采用更大的间隙。

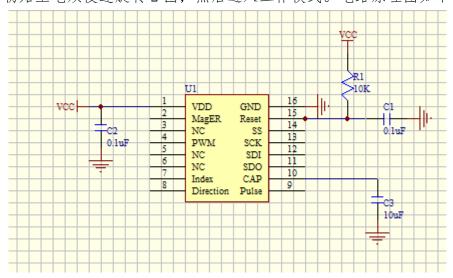

6 仿真建模

江苏多维科技有限公司 Ver. A 网址 <u>www.dowaytech.com</u> , 电子邮件: <u>info@dowaytech.com</u> 中国江苏 张家港保税区广东路 7 号 邮编 215634

10 of 12

多维科技

如上图所示,在芯片表面的上方或下方放置一块径向磁化的永久磁铁,芯片采用 TMR 磁传感器阵列对分布于器件封装表面的磁场水平分量进行采样,磁性敏感区域位于芯片中心为参考圆心,半径为 1.2mm 的圆周上,位于磁性敏感区域的 TMR 传感器采用分组方式配置,从而以差分方式输出。


差分信号 Y1-Y2 将给出磁场的正弦向量,差分信号 X1-X2 将给出磁场的余弦向量。磁源相对于 TMR 传感器阵列的角度偏移 α 可建模为

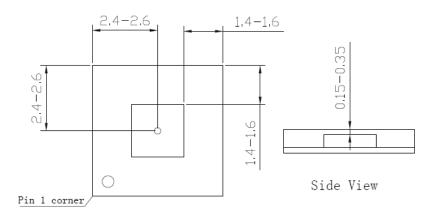
$\alpha = \tan^{-1}(Y2 - Y1)/(X2 - X1)$.

为了消除外部干扰磁场的影响,器件采用了坚固的差分采样技术和比例计算算法,对正弦和 余弦向量进行差分采样,能够消除由于磁源本身或外部干扰磁场导致的磁场分量所引起的任 何共模误差。对正弦和余弦向量进行比例分配,则不再需要精确的绝对的磁场强度。

7 应用指南

用户使用时,初始上电须慢速旋转2圈,然后进入工作模式。电路原理图如下图所示。

8 封装尺寸及传感器敏感中心位置


封装尺寸

江苏多维科技有限公司 网址 www.dowaytech.com , 电子邮件: info@dowaytech.com 中国江苏 张家港保税区广东路 7 号 邮编 215634 Ver. A 11 of 12 多维科技

传感元件位置

Top View