TMR2309 3-Axis TMR Linear Sensor

Features and Benefits

- Tunneling Magnetoresistance (TMR) Technology
- Ultra High Sensitivity ($\sim 100 \mathrm{mV} / \mathrm{V} / \mathrm{Oe}$)
- Ultra Low Noise Spectral Density ($150 \mathrm{pT} / \sqrt{ } \mathrm{Hz}$ @ 1 Hz)
- Very Low Power Consumption
- Excellent Thermal Stability
- Low Hysteresis
- Compatible with Wide Range of Supply Voltages
- No need for set/reset calibration

Applications

- Weak Magnetic Field Sensing
- Current Sensors
- Position and Displacement Sensing
- Bio-medical Sensing
- Magnetic Communication

General Description

The 3-Axis TMR2309 linear sensor utilizes three unique push-pull Wheatstone bridges. The 3-Axis TMR2309 is available in a $9.5 \mathrm{~mm} \times 9.5 \mathrm{~mm} \times 6.0 \mathrm{~mm}^{3}$ package.

Transfer Curve

The following figure shows the response of the 3-axis TMR2309 to an applied magnetic field in the range of $\pm 1 \mathrm{Oe}$ and $\pm 10 \mathrm{Oe}$ when the TMR2309 is biased at 1 V .

diminsion

Pin Configuration

VCC X+ Y+ Z+

GND X- Y- Z-

Pin No.	Pin Name	Pin Function
1	VZ-	Analog Z-axis Output -
2	VY-	Analog Y-axis Output-
3	VX-	Analog X-axis Output-
4	GND	Ground
5	VCC	Supply Voltage
6	VX+	Analog X-axis Output +
7	VY+	Analog Y-axis Output +
8	VZ+	Analog Z-axis Output +

Absolute Maximum Ratings

Parameter	Symbol	Limit	Unit
Supply Voltage	VCC	7	V
Reverse Supply Voltage	VRCC	7	V
Max Exposed Field	He	5000	$\mathrm{Oe}^{(1)}$
ESD Voltage	VESD	4000	V
Operating Temperature	T_{A}	$-40 \sim 125$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-50 \sim 150$	${ }^{\circ} \mathrm{C}$

Specification ($\mathrm{V}_{\mathrm{CC}}=\mathbf{1 . 0 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, Differential Output)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Supply Voltage	Vcc	Operating		1	7	V
Supply Current	ICC	Output Open		$0.07{ }^{(2)}$		mA
Resistance	R			15		kOhm
Sensitivity	SEN	X-axis Fit @ $\pm 1 \mathrm{Oe}$		100		$\mathrm{mV} / \mathrm{V} / \mathrm{Oe}$
		Y-axis Fit @ $\pm 1 \mathrm{Oe}$		100		$\mathrm{mV} / \mathrm{V} / \mathrm{Oe}$
		Z-axis Fit @ $\pm 1 \mathrm{Oe}$		100		$\mathrm{mV} / \mathrm{V} / \mathrm{Oe}$
Saturation Field	$\mathrm{H}_{\text {sat }}$	X-axis		± 8		Oe
		Y-axis		± 8		Oe
		Z-axis		± 8		Oe
Non-Linearity	NONL	X-axis Fit @ ± 1 Oe		0.5		\%FS
		Y-axis Fit @ $\pm 1 \mathrm{Oe}$		0.5		\%FS
		Z-axis Fit @ $\pm 1 \mathrm{Oe}$		0.5		\%FS
Offset Voltage	$\mathrm{V}_{\text {offset }}$	X-axis	-15		15	mV / V
		Y-axis	-15		15	mV / V
		Z-axis	-15		15	mV / V
Hysteresis	Hys	X-axis Fit @ $\pm 1 \mathrm{Oe}$			0.02	Oe
		Y-axis Fit @ $\pm 1 \mathrm{Oe}$			0.02	Oe
		Z-axis Fit @ ± 1 Oe			0.02	Oe
Temperature Coefficient of Resistance	TCR	$\mathrm{H}=0 \mathrm{Oe}$		-600		PPM/ $/{ }^{\circ} \mathrm{C}$
Temperature Coefficient of Sensitivity	TCS			-300		PPM/ ${ }^{\circ} \mathrm{C}$
Self Noise		X-axis @ 1Hz		150		$\mathrm{pT} / \sqrt{ } \mathrm{Hz}$
		Y-axis @ 1Hz		150		$\mathrm{pT} / \sqrt{ } \mathrm{Hz}$
		Z-axis @ 1Hz		150		$\mathrm{pT} / \sqrt{ } \mathrm{Hz}$

Notes:
(1) $1 \mathrm{Oe}($ Oersted $)=1$ Gauss in air $=0.1$ millitesla $=79.8 \mathrm{~A} / \mathrm{m}$.
(2) Custom resistance may be available upon request.

DIIMENSION

Package Information

Size: Length x Width x Height $=9.5 \times 9.5 \times 6.0 \mathrm{~mm}^{3}$

The information provided herein by MultiDimension Technology Co.,Ltd.(hereinafter MultiDimension) is believed to be accurate and reliable. Publication neither conveys nor implies any license under patent or other industrial or intellectual property rights. MultiDimensionreserves the right to make changes to product specifications for the purpose of improving product quality, reliability, and functionality. MultiDimensiondoes not assume any liability arising out of the application and use of its products. MultiDimension's customers using or selling this product for use in appliances, devices, or systems where malfunction can reasonably be expected to result in personal injury do so at their own risk and agree to fully indemnify MultiDimensionfor any damages resulting from such applications.
"MultiDimension", "MultiDimension Sensing the Future", and "MDT" are registered trademarks of MultiDimension Technology Co.,Ltd.

